Skip to main content

Estimation of Anthocyanins in Homogeneous Bean Landraces Using Neuroevolution

  • Conference paper
  • First Online:
Advances in Computational Intelligence. MICAI 2023 International Workshops (MICAI 2023)

Abstract

A pigment of great interest is the anthocyanins. It is due to the nutritional benefits discovered in various foods, such as common beans. In this work, we report the estimation of anthocyanins in homogeneous colored bean landraces using neuroevolution. Two neuroevolution techniques, NEAT and DeepGA, were implemented to find this task’s suitable neural network structure. Both techniques were compared against a Convolutional Neural Network (CNN) experimentally developed called AnthEst-Net architecture, which found competitive results in anthocyanin estimation. The input data of the network architectures were two-color characterizations, two-dimensional histograms, and data vectors. The accuracies obtained on the test set in HSI color space were 85.38 ± 11.77 and 87.89 ± 9.67 for DeepGA and AnthEstNet architecture, respectively. Regarding CIE L*a*b* color space, DeepGA obtained an accuracy of 86.85 ± 11.08, while AnthEstNet got 87.08 ± 14.19. Results suggest that the architecture reported by DeepGA is suitable for anthocyanins estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Santos-Buelga, C., Mateus, N., De Freitas, V.: Anthocyanins. Plant pigments and beyond. J. Agric. Food Chem. 62(29), 6879–6884 (2014). https://doi.org/10.1021/jf501950s

    Article  Google Scholar 

  2. Kaur, S., et al.: Protective and defensive role of anthocyanins under plant abiotic and biotic stresses: an emerging application in sustainable agriculture. J. Biotechnol. 361, 12–29 (2023). https://doi.org/10.1016/j.jbiotec.2022.11.009

    Article  Google Scholar 

  3. Li, D., Wang, P., Luo, Y., Zhao, M., Chen, F.: Health benefits of anthocyanins and molecular mechanisms: update from recent decade. Crit. Rev. Food Sci. Nutr. 57(8), 1729–1741 (2017). https://doi.org/10.1080/10408398.2015.1030064

    Article  Google Scholar 

  4. Gepts, P., Papa, R.: Evolution during domestication. e LS (2001)

    Google Scholar 

  5. Chávez-Servia, J.L., et al.: Diversity of common bean (Phaseolus vulgaris L.) landraces and the nutritional value of their grains. In: Grain Legumes: IntechOpen (2016)

    Google Scholar 

  6. Wrolstad, R.E.: Color and pigment analyses in fruit products (1993)

    Google Scholar 

  7. Zhang, C., Wu, W., Zhou, L., Cheng, H., Ye, X., He, Y.: Developing deep learning based regression approaches for determination of chemical compositions in dry black goji berries (Lycium ruthenicum Murr.) using near-infrared hyperspectral imaging. Food Chem. 319, 126536 (2020). https://doi.org/10.1016/j.foodchem.2020.126536

    Article  Google Scholar 

  8. Chen, Y., Zheng, L., Wang, M., Wu, M., Gao, W.: Prediction of chlorophyll and anthocyanin contents in purple lettuce based on image processing. Presented at the 2020 ASABE Annual International Virtual Meeting, St. Joseph, MI (2020)

    Google Scholar 

  9. del Valle, J.C., Gallardo-López, A., Buide, M.L., Whittall, J.B., Narbona, E.: Digital photography provides a fast, reliable, and noninvasive method to estimate anthocyanin pigment concentration in reproductive and vegetative plant tissues. Ecol. Evol. 8(6), 3064–3076 (2018). https://doi.org/10.1002/ece3.3804

    Article  Google Scholar 

  10. Fernandes, A.M., Franco, C., Mendes-Ferreira, A., Mendes-Faia, A., da Costa, P.L., Melo-Pinto, P.: Brix, pH and anthocyanin content determination in whole Port wine grape berries by hyperspectral imaging and neural networks. Comput. Electron. Agric. 115, 88–96 (2015). https://doi.org/10.1016/j.compag.2015.05.013

    Article  Google Scholar 

  11. Chen, S., Zhang, F., Ning, J., Liu, X., Zhang, Z., Yang, S.: Predicting the anthocyanin content of wine grapes by NIR hyperspectral imaging. Food Chem. 172, 788–793 (2015). https://doi.org/10.1016/j.foodchem.2014.09.119

    Article  Google Scholar 

  12. Taghadomi-Saberi, S., Omid, M., Emam-Djomeh, Z., Ahmadi, H.: Evaluating the potential of artificial neural network and neuro-fuzzy techniques for estimating antioxidant activity and anthocyanin content of sweet cherry during ripening by using image processing. J. Sci. Food Agric. 94(1), 95–101 (2014). https://doi.org/10.1002/jsfa.6202

    Article  Google Scholar 

  13. Yoshioka, Y., Nakayama, M., Noguchi, Y., Horie, H.: Use of image analysis to estimate anthocyanin and UV-excited fluorescent phenolic compound levels in strawberry fruit. Breed. Sci. 63(2), 211–217 (2013). https://doi.org/10.1270/jsbbs.63.211. (in English)

    Article  Google Scholar 

  14. Morales-Reyes, J.L., Acosta-Mesa, H.-G., Aquino-Bolaños, E.-N., Herrera Meza, S., Márquez Grajales, A.: Anthocyanins estimation in homogeneous bean landrace (Phaseolus vulgaris L.) using probabilistic representation and convolutional neural networks. J. Agric. Eng. 54(2) (2023). https://doi.org/10.4081/jae.2023.1421

  15. Prilianti, K.R., Setiyono, E., Kelana, O.H., Brotosudarmo, T.H.P.: Deep chemometrics for nondestructive photosynthetic pigments prediction using leaf reflectance spectra. Inf. Process. Agric. 8(1), 194–204 (2021). https://doi.org/10.1016/j.inpa.2020.02.001

    Article  Google Scholar 

  16. Concepcion, R.S., II., Dadios, E.P., Cuello, J.: Non-destructive in situ measurement of aquaponic lettuce leaf photosynthetic pigments and nutrient concentration using hybrid genetic programming. AGRIVITA J. Agric. Sci. 43(3), 589–610 (2021). https://doi.org/10.17503/agrivita.v43i3.2961

    Article  Google Scholar 

  17. Zhou, X., Qin, A.K., Gong, M., Tan, K.C.: A survey on evolutionary construction of deep neural networks. IEEE Trans. Evol. Comput. 25(5), 894–912 (2021). https://doi.org/10.1109/TEVC.2021.3079985

    Article  Google Scholar 

  18. Xu, B.J., Yuan, S.H., Chang, S.K.C.: Comparative analyses of phenolic composition, antioxidant capacity, and color of cool season legumes and other selected food legumes. J. Food Sci. 72(2), S167–S177 (2007). https://doi.org/10.1111/j.1750-3841.2006.00261.x

    Article  Google Scholar 

  19. Giusti, M.M., Wrolstad, R.E.: Characterization and measurement of anthocyanins by UV-visible spectroscopy. Curr. Protocols Food Anal. Chem. (1), F1.2.1–F1.2.13 (2001). https://doi.org/10.1002/0471142913.faf0102s00

  20. Morales-Reyes, J.L., Acosta-Mesa, H.G., Aquino-Bolaños, E.N., Herrera-Meza, S., Cruz-Ramírez, N., Chávez-Servia, J.L.: Classification of bean (Phaseolus vulgaris L.) landraces with heterogeneous seed color using a probabilistic representation. Presented at the 2021 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC) (2021)

    Google Scholar 

  21. Tang, J.: A color image segmentation algorithm based on region growing. In: 2010 2nd International Conference on Computer Engineering and Technology, vol. 6, pp. V6-634–V6-637. IEEE (2010). https://doi.org/10.1109/ICCET.2010.5486012

  22. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall, Upper Saddle River (2002)

    Google Scholar 

  23. Chandra, R., Tiwari, A.: Distributed Bayesian optimisation framework for deep neuroevolution. Neurocomputing 470, 51–65 (2022). https://doi.org/10.1016/j.neucom.2021.10.045

    Article  Google Scholar 

  24. Lehman, J., Miikkulainen, R.: Neuroevolution. Scholarpedia 8(6), 30977 (2013)

    Article  Google Scholar 

  25. Stanley, K.O., Clune, J., Lehman, J., Miikkulainen, R.: Designing neural networks through neuroevolution. Nat. Mach. Intell. 1(1), 24–35 (2019). https://doi.org/10.1038/s42256-018-0006-z

    Article  Google Scholar 

  26. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002). https://doi.org/10.1162/106365602320169811

    Article  Google Scholar 

  27. Vargas-Hákim, G.-A., Mezura-Montes, E., Acosta-Mesa, H.-G.: Hybrid encodings for neuroevolution of convolutional neural networks: a case study. Presented at the Proceedings of the Genetic and Evolutionary Computation Conference Companion, Lille, France (2021). https://doi.org/10.1145/3449726.3463133

Download references

Acknowledgements

The first author acknowledges the National Council of Humanities, Sciences and Technologies (CONAHCyT) of Mexico for granting support for the realization of this investigation through scholarship 712056 awarded for postdoctoral studies at the Centre for Food Research and Development in the University of Veracruz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José-Luis Morales-Reyes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Morales-Reyes, JL., Aquino-Bolaños, EN., Acosta-Mesa, HG., Márquez-Grajales, A. (2024). Estimation of Anthocyanins in Homogeneous Bean Landraces Using Neuroevolution. In: Calvo, H., Martínez-Villaseñor, L., Ponce, H., Zatarain Cabada, R., Montes Rivera, M., Mezura-Montes, E. (eds) Advances in Computational Intelligence. MICAI 2023 International Workshops. MICAI 2023. Lecture Notes in Computer Science(), vol 14502. Springer, Cham. https://doi.org/10.1007/978-3-031-51940-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51940-6_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51939-0

  • Online ISBN: 978-3-031-51940-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics