Skip to main content

Comparative Study of the Starting Stage of Adaptive Differential Evolution on the Induction of Oblique Decision Trees

  • Conference paper
  • First Online:
Advances in Computational Intelligence. MICAI 2023 International Workshops (MICAI 2023)

Abstract

This study describes the application of four adaptive differential evolution algorithms to generate oblique decision trees. A population of decision trees encoded as real-valued vectors evolves through a global search strategy. Three schemes to create the initial population of the algorithms are applied to reduce the number of redundant nodes (whose test condition does not divide the set of instances). The results obtained in the experimental study aim to establish that the four algorithms have similar statistical behavior. However, using the dipole-based start strategy, the JSO method creates trees with better accuracy. Furthermore, the Success-History based Adaptive Differential Evolution with linear population reduction (LSHADE) algorithm stands out for inducing more compact trees than those created by the other variants in the three initializations evaluated.

Mexico’s National Council of Humanities, Science, and Technology (CONAHCYT) awarded a scholarship to the first author (CVU 1100085) for graduate studies at the Laboratorio Nacional de Informática Avanzada (LANIA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bobrowski, L.: Piecewise-linear classifiers, formal neurons and separability of the learning sets. In: Proceedings of 13th International Conference on Pattern Recognition, vol. 4, pp. 224–228 (1996)

    Google Scholar 

  2. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. Chapman and Hall (1984)

    Google Scholar 

  3. Brest, J., Maučec, M.S., Bošković, B.: Single objective real-parameter optimization: algorithm jSO. In: CEC 2017, pp. 1311–1318 (2017)

    Google Scholar 

  4. Cantú-Paz, E., Kamath, C.: Using evolutionary algorithms to induce oblique decision trees. In: GECCO 2000, pp. 1053–1060 (2000)

    Google Scholar 

  5. Draa, A., Bouzoubia, S., Boukhalfa, I.: A sinusoidal differential evolution algorithm for numerical optimisation. Appl. Soft Comput. 27, 99–126 (2015)

    Article  Google Scholar 

  6. Estivill-Castro, V., Gilmore, E., Hexel, R.: Constructing interpretable decision trees using parallel coordinates. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2020. LNCS (LNAI), vol. 12416, pp. 152–164. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61534-5_14

    Chapter  Google Scholar 

  7. Feoktistov, V.: Differential Evolution: In Search of Solutions. Springer, New York (2007). https://doi.org/10.1007/978-0-387-36896-2

    Book  Google Scholar 

  8. Frank, E., Hall, M., Witten, I.: The WEKA Workbench. Online Appendix (2016). https://www.cs.waikato.ac.nz/ml/weka/Witten_et_al_2016_appendix.pdf

  9. Freitas, A.R.R., Silva, R.C.P., Guimarães, F.G.: Differential evolution and perceptron decision trees for fault detection in power transformers. In: Snášel, V., Abraham, A., Corchado, E. (eds.) SOCO 2012. AISC, vol. 188, pp. 143–152. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-32922-7_15

    Chapter  Google Scholar 

  10. García, S., Fernández, A., Luengo, J., Herrera, F.: A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability. Soft. Comput. 13, 959–977 (2009). https://doi.org/10.1007/s00500-008-0392-y

    Article  Google Scholar 

  11. Ghosh, A., Das, S., Panigrahi, B.K., Das, A.K.: A noise resilient differential evolution with improved parameter and strategy control. In: CEC 2017, pp. 2590–2597 (2017)

    Google Scholar 

  12. Jariyavajee, C., Polvichai, J., Sirinaovakul, B.: Searching for splitting criteria in multivariate decision tree using adapted JADE optimization algorithm. In: SSCI 2019, pp. 2534–2540 (2019)

    Google Scholar 

  13. Kamath, U., Liu, J.: Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-83356-5

    Book  Google Scholar 

  14. Kelly, M., Longjohn, R., Nottingham, K.: The UCI Machine Learning Repository (2023). https://archive.ics.uci.edu

  15. Krȩtowski, M.: An evolutionary algorithm for oblique decision tree induction. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 432–437. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24844-6_63

    Chapter  Google Scholar 

  16. Kretowski, M.: Evolutionary Decision Trees in Large-Scale Data Mining. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21851-5

    Book  Google Scholar 

  17. Liu, J., Lampinen, J.: A fuzzy adaptive differential evolution algorithm. Soft. Comput. 9, 448–462 (2005). https://doi.org/10.1007/s00500-004-0363-x

    Article  Google Scholar 

  18. Lopes, R.A., Freitas, A.R.R., Silva, R.C.P., Guimarães, F.G.: Differential evolution and perceptron decision trees for classification tasks. In: Yin, H., Costa, J.A.F., Barreto, G. (eds.) IDEAL 2012. LNCS, vol. 7435, pp. 550–557. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32639-4_67

    Chapter  Google Scholar 

  19. Murthy, S.K., Kasif, S., Salzberg, S., Beigel, R.: OC1: a randomized algorithm for building oblique decision trees. In: AAAI 1993, vol. 93, pp. 322–327 (1993)

    Google Scholar 

  20. Nebro, A.J., Durillo, J.J., Vergne, M.: Redesigning the jMetal multi-objective optimization framework. In: GECCO 2015, pp. 1093–1100 (2015)

    Google Scholar 

  21. Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-31306-0

    Book  Google Scholar 

  22. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986). https://doi.org/10.1007/BF00116251

    Article  Google Scholar 

  23. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)

    Google Scholar 

  24. Rivera-Lopez, R., Canul-Reich, J.: A global search approach for inducing oblique decision trees using differential evolution. In: Mouhoub, M., Langlais, P. (eds.) AI 2017. LNCS (LNAI), vol. 10233, pp. 27–38. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57351-9_3

    Chapter  Google Scholar 

  25. Rivera-Lopez, R., Canul-Reich, J., Gámez, J.A., Puerta, J.M.: OC1-DE: a differential evolution based approach for inducing oblique decision trees. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10245, pp. 427–438. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59063-9_38

    Chapter  Google Scholar 

  26. Sallam, K.M., Elsayed, S.M., Sarker, R.A., Essam, D.L.: Improved united multi-operator algorithm for solving optimization problems. In: CEC 2018, pp. 1–8 (2018)

    Google Scholar 

  27. Tanabe, R., Fukunaga, A.: Success-history based parameter adaptation for differential evolution. In: CEC 2013, pp. 71–78 (2013)

    Google Scholar 

  28. Tanabe, R., Fukunaga, A.S.: Improving the search performance of SHADE using linear population size reduction. In: CEC 2014, pp. 1658–1665 (2014)

    Google Scholar 

  29. Yeung, K., Lodge, M.: Algorithmic Regulation. Oxford University Press, Oxford (2019)

    Book  Google Scholar 

  30. Zhang, J., Sanderson, A.C.: JADE: self-adaptive differential evolution with fast and reliable convergence performance. In: CEC 2007, pp. 2251–2258 (2007)

    Google Scholar 

  31. Zhang, Y., Tiňo, P., Leonardis, A., Tang, K.: A survey on neural network interpretability. IEEE Trans. Emerg. Top. Comput. Intell. 5(5), 726–742 (2021)

    Article  Google Scholar 

  32. Zielinski, K., Laur, R.: Stopping criteria for differential evolution in constrained single-objective optimization. In: Chakraborty, U.K. (ed.) Advances in Differential Evolution. SCI, vol. 143, pp. 111–138. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68830-3_4

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Rivera-López .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Morales-Hernández, M.Á., Rivera-López, R., Mezura-Montes, E., Canul-Reich, J., Cruz-Chávez, M.A. (2024). Comparative Study of the Starting Stage of Adaptive Differential Evolution on the Induction of Oblique Decision Trees. In: Calvo, H., Martínez-Villaseñor, L., Ponce, H., Zatarain Cabada, R., Montes Rivera, M., Mezura-Montes, E. (eds) Advances in Computational Intelligence. MICAI 2023 International Workshops. MICAI 2023. Lecture Notes in Computer Science(), vol 14502. Springer, Cham. https://doi.org/10.1007/978-3-031-51940-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51940-6_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51939-0

  • Online ISBN: 978-3-031-51940-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics