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Abstract. We study reduction rules for Directed Feedback Ver-
tex Set (DFVS) on instances without long cycles. A DFVS instance
without cycles longer than d naturally corresponds to an instance of d-
Hitting Set, however, enumerating all cycles in an n-vertex graph and
then kernelizing the resulting d-Hitting Set instance can be too costly,
as already enumerating all cycles can take time Ω(nd). To the best of
our knowledge, the kernelization of DFVS on graphs without long cycles
has not been studied in the literature, except for very restricted cases,
e.g., for tournaments, in which all induced cycles are of length three.
We show how to compute a kernel with at most 2dkd vertices and at
most d3dkd induced cycles of length at most d (which however, cannot
be enumerated efficiently), where k is the size of a minimum directed
feedback vertex set. We then study classes of graphs whose underlying
undirected graphs have bounded expansion or are nowhere dense; these
are very general classes of sparse graphs, containing e.g. classes exclud-
ing a minor or a topological minor. We prove that for such classes with-
out induced cycles of length greater than d we can compute a kernel
with Od(k) and Od,ε(k

1+ε) vertices for any ε > 0, respectively, in time
Od(n

O(1)) and Od,ε(n
O(1)), respectively. The most restricted classes we

consider are strongly connected planar graphs without any (induced or
non-induced) long cycles. We show that these have bounded treewidth
and hence DFVS on planar graphs without cycles of length greater than
d can be solved in time 2O(d) ·nO(1). We finally present a new data reduc-
tion rule for general DFVS and prove that the rule together with a few
standard rules subsumes all the rules applied by Bergougnoux et al. to
obtain a polynomial kernel for DFVS[FVS], i.e., DFVS parameterized
by the feedback vertex set number of the underlying (undirected) graph.
We conclude by studying the LP-based approximation of DFVS.

1 Introduction

A directed feedback vertex set of a directed n-vertex graph G is a subset S ⊆ V (G)
of vertices such that every directed cycle of G intersects with S. In the Directed
Feedback Vertex Set (DFVS) problem, we are given a directed graph G and
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an integer k, and the objective is to determine whether G admits a directed feed-
back vertex set of size at most k. In what follows, unless stated otherwise, when
we speak of a graph we always mean a directed graph, and when we speak of a
cycle we mean a directed cycle.

DFVS is one of Karp’s 21 NP-complete problems [Kar72]. Its NP-completeness
follows easily by a reduction from Vertex Cover, which is a special case of
DFVS where all induced cycles have length two. The fastest known exact al-
gorithm for DFVS, due to Razgon [Raz07], runs in time O(1.9977n · nO(1)).
Chen, Liu, Lu, O’Sullivan, and Razgon [CLL+08] proved that the problem is
fixed-parameter tractable when parameterized by solution size k; providing an
algorithm running in time O(k!4kk4nm) = 2O(k log k) ·nm, for graphs with n ver-
tices and m edges. The dependence on the input size has been improved to
O(k!4kk5(n+m)) by Lokshtanov, Ramanujan, and Saurabh [LRS16]. It is a
major open problem in parameterized complexity whether the running time can
be improved to 2o(k log k) · nO(1) [LRS16]. The problem has also been studied
under different parameterizations. Bonamy et al. [BKN+18] proved that one can
solve the problem in time 2O(t log t) · nO(1), where t denotes the treewidth of the
underlying undirected graph. They also proved that this running time is tight
assuming the exponential-time hypothesis (ETH). On planar graphs the running
time can be improved to 2O(t) ·nO(1). A natural question is whether these results
can be extended to directed width measures, e.g., whether the problem is fixed-
parameter tractable when parameterized by directed treewidth. Unfortunately,
this is not the case. DFVS remains NP-complete even on very restricted classes
of graphs such as graphs of cycle rank at most four (which in particular have
bounded directed treewidth), as shown by Kreutzer and Ordyniak [KO11], and
hence the problem is not even in XP when parameterized by cycle rank.

The question whether DFVS parameterized by solution size k admits a poly-
nomial kernel, i.e., an equivalent polynomial-time computable instance of size
polynomial in k, remains one of the central open questions in the area of kernel-
ization. Bergougnoux et al. [BEG+21] showed that the problem admits a kernel
of size O(f4) in general graphs and O(f) in graphs embeddable on a fixed surface,
where f denotes the size of a minimum undirected feedback vertex set in the
underlying undirected graph. Note that f can be arbitrarily larger than k. More
generally, for an integer η, a subset M ⊆ V (G) of vertices is called a treewidth
η-modulator if G − M has treewidth at most η. Lokshtanov et al. [LRS+19]
showed that when given a graph G, an integer k, and a treewidth η-modulator
of size ℓ, one can compute a kernel with (k · ℓ)O(η2) vertices. This result sub-
sumes the result of Bergougnoux et al. [BEG+21], as the parameter k + ℓ is
upper bounded by O(f) and can be arbitrarily smaller than f . On the other
hand, unless NP ⊆ coNP/poly, for η ≥ 2, there cannot exist a polynomial ker-
nel when we parameterize by the size of a treewidth-η modulator alone, as even
Vertex Cover cannot have a polynomial kernel when parameterized by the
size of a treewidth-2 modulator [CLP+14]. Polynomial kernels for DFVS are
known for several restricted graph classes, see e.g. [BJMS16,DGH+10,FLL+19].
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From the viewpoint of approximation, the best known algorithms for DFVS
are based on integer linear programs whose fractional relaxations can be solved
efficiently. It was shown by Seymour [Sey95] that the integrality gap for DFVS
is at most O(log k∗ log log k∗), where k∗ denotes the optimal value of a frac-
tional directed feedback vertex set. Note that the linear programming formu-
lation of DFVS may contain an exponential number of constraints. Even et
al. [ESS+98] circumvented this obstacle and provided a related combinatorial
polynomial-time algorithm yielding an O(log k∗ log log k∗) ⊆ O(log k log log k)-
approximation. Assuming the Unique Games Conjecture (UGC), the problem
does not admit a polynomial-time computable constant-factor approximation
algorithm [GHM+11,GL16,Sve12]. Lokshtanov et al. [LMR+21] showed how to
compute a 2-approximation in time 2O(k) · nO(1).

This work was initiated after successfully participating in the PACE 2022
programming challenge [GHSS22]. In the scope of a student project at the Uni-
versity of Bremen, we participated in the competition and our solver ranked
second in the exact track [BDF+22]. In this paper we present our theoretical
findings, whereas an empirical evaluation of the implemented rules will be pre-
sented in future work.

We first study DFVS instances without long cycles. This study is intimately
linked to the study of the Hitting Set problem. Many of the known data
reduction rules for DFVS are special cases of general reduction rules for Hitting
Set. A hitting set in a set system G with ground set V (G) and edge set E(G),
where each S ∈ E(G) is a subset of V (G), is a subset H ⊆ V (G) such that
H∩S 6= ∅ for all S ∈ E(G). Given a graph G, a directed feedback vertex set in G
corresponds one-to-one to a hitting set for the set system G where V (G) = V (G)
and E(G) = {V (C) | C is a cycle in G}. The main difficulty in applying reduction
rules designed for Hitting Set is that we first need to efficiently convert an
instance of DFVS to an instance of Hitting Set. However, in general, we
want to avoid computing G from G, as |E(G)| may be super-polynomial in the
size of the vertex set, i.e., super-polynomial in |V (G)| = |V (G)|. One simple
reduction rule for Hitting Set is to remove all sets S ∈ E(G) such that there
exists S′ ∈ E(G) with S′ ⊆ S. Instances of Hitting Set that do not contain
such pairs of sets are called vertex induced. The remaining minimal sets in the
corresponding DFVS instance are the induced cycles of G. It follows that in
a DFVS instance it suffices to hit all induced cycles. Unfortunately, it is NP-
complete to detect if a vertex or an edge lies on an induced cycle [FKMP95] even
on planar graphs, implying that it is not easy to exploit this property for DFVS
directly. Overcoming this obstacle requires designing data reduction rules based
on sufficient conditions guaranteeing that a vertex or an edge does not lie on an
induced cycle and can therefore be safely removed.

An instance of DFVS without cycles of length greater than d naturally cor-
responds to an instance of d-Hitting Set. As shown in [AK10], d-Hitting
Set admits a kernel with k + (2d − 1)kd−1 vertices, which can be efficiently
computed when the d-Hitting Set instance is explicitly given as input. This
is known to be near optimal, as d-Hitting Set does not admit a kernel of
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size O(kd−ε) unless the polynomial hierarchy collapses [DVM14]; note that here
size refers to the total size of the instance and not to the number of vertices.
The question of whether there exists a kernel for d-Hitting Set with fewer
elements is considered to be one of the most important open problems in ker-
nelization [BFG+11,DGH+10,FLL+23,FLSZ19,YWC17]. However, even in this
restricted case we cannot efficiently generate the d-Hitting Set instance from
the DFVS instance, as even testing if a vertex lies on an induced cycle of length
at most d is W[1]-hard [HH06] when parameterized by d. We hence have to avoid
computing a Hitting Set instance explicitly but must rather work on the im-
plicit graph representation of a DFVS instance. To the best of our knowledge
the kernelization of DFVS on graphs without long cycles has not been studied
in the literature, except for some very restricted cases, e.g., on tournaments in
which all induced cycles are of length three [BFG+11,DGH+10,FLL+19].

We show that after applying the standard reduction rules we can compute
in polynomial time a superset W of the vertices that lie on induced cycles of
length at most d and which is of size at most 2dkd. As it suffices to hit all induced
cycles, G[W ] is an equivalent instance. Up to a factor k and constants depending
only on d this matches the best bounds we know for the kernelization of d-
Hitting Set. Potentially in the kernelized instance on 2dkd vertices we could
have (2dkd)d = 2d

2

kd
2

induced cycles. Based on the classical sunflower lemma,
we prove however, that kernelized instances contain at most d3dkd induced cycles
of length at most d, for any fixed d ≥ 2. In light of the major open question
whether DFVS admits a polynomial kernel, we pose as a question whether it
admits a kernel of size Od(k

O(1)) computable in time Od(n
O(1)) on instances

without induced cycles of length greater than d.

We then turn our attention to restricted graph classes for which we can effi-
ciently test whether a vertex lies on an induced cycle of length at most d, e.g.,
by efficient algorithms for first-order model-checking [DMS23,GKS17]. We study
classes of graphs whose underlying undirected graphs have bounded expansion
or are nowhere dense. These are very general classes of sparse graphs [NDM08,
NdM11], including, e.g., all classes that exclude a minor or a topological minor,
such as planar graphs. We show that DFVS on classes of bounded expansion
admits a kernel with Od(k) vertices, and a kernel with Od,ε(k

1+ε) vertices, for
any ε > 0, on nowhere dense classes, respectively, computable in time Od(n

O(1))
and Od,ε(n

O(1)), respectively. This answers our above question for very gen-
eral classes of sparse graph positively. Our method is based on the approach
of [DDF+16, EGK+17] for the kernelization of the Distance-r Dominating
Set problem on bounded expansion and nowhere dense classes.

We conclude our study of restricted graph classes by observing that a strongly
connected planar graph without any long (induced or non-induced) cycles has
bounded treewidth. We observe that after the application of the reduction rules,
weak components are equal to strong components. Hence, the DAG of strong com-
ponents in fact is a tree. Then, if each strong component has bounded treewidth,
we can combine the tree decompositions of the strong components with the tree
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of strong components to derive that the whole graph after application of the rules
has has bounded treewidth and solve it efficiently by the algorithm of Bonamy
et al. [BKN+18].

We proceed by designing a new data reduction rule that provides a sufficient
condition for a vertex or edge to lie on an induced cycle. The new rule conve-
niently generalizes many of the complicated rules presented by Bergougnoux et
al. [BEG+21] to establish a kernel of size O(f4), where f is the size of a min-
imum feedback vertex set for the underlying undirected graph. In addition to
being simpler, our rule does not require the initial computation of a feedback
vertex set for the underlying undirected graph.

Finally, we study the LP-based approximation of DFVS. As previously men-
tioned, we can formulate an integer linear program (ILP) that is equivalent to
DFVS. In the natural formulation, which we call the cycles ILP, we introduce
a binary variable dv for every v ∈ V (G) where dv = 1 means that v is part of
a solution. The goal is to minimize the number of variables set to 1, given that
all induced cycles are hit. Note that this formulation can have an exponential
number of constraints. Instead, we study an equivalent ILP of polynomial size,
the order ILP, which is based on the fact that a directed graph is acyclic if and
only if there is a topological order on its vertex set. We prove that the optimal
solution to the LP-relaxation of the order ILP is at most 3 times smaller than
the optimal solution to the LP-relaxation of the cycles ILP. This makes LP-
based approximation approaches directly accessible and avoids the specialized
combinatorial algorithm of Even et al. [ESS+98].

2 Preliminaries

A graph G consists of a (non-empty) vertex set V (G) and edge set E(G) ⊆
V (G)×V (G). For vertices u, v ∈ V (G) we write uv for the edge directed from u
to v. An edge vv is called a loop. We denote the in- and out-neighborhood of
v ∈ V (G) by N−

G (v) = {u | uv ∈ E(G)} and N+
G (v) = {u | vu ∈ E(G)},

respectively. The neighborhood of v is denoted by NG(v) = N−
G (v) ∪ N+

G (v). A
cycle C in a graph G is a sequence of vertices v1v2 . . . vℓ+1 such that v1 = vℓ+1,
vi 6= vj for all i 6= j ≤ ℓ, and vivi+1 ∈ E(G) for all i ≤ ℓ. We denote the set
of vertices that appear in C by V (C) = {v1, . . . , vℓ}. We denote by ℓ the length
of C. A u-v-path is a sequence of vertices v1v2 . . . vℓ+1 of pairwise distinct vertices
such that v1 = u and vℓ+1 = v. Likewise, we define V (P ) = {v1, . . . , vℓ+1} and
call ℓ the length of the path, that is, the number of edges of P . For a u-v-path P
and a v-w-path Q we write PQ for the u-w-walk obtained by concatenating P
and Q (removing the repetition of v in the middle). Recall that a u-w-walk in a
graph G implies the existence of a u-w-path in G using a subset of the vertices
and edges of the walk. By a slight abuse of notation, we sometimes use PQ
to denote the u-w-path. For a set S ⊆ V (G), we write Nd+

G [S] to denote the

d-out-neighborhood of S in G and Nd−
G [S] to denote the d-in-neighborhood of S

in G. That is, Nd+
G [S] contains all vertices of G that are reachable from some

vertex in S via a path of length at most d ≥ 0, and Nd−
G [S] contains all vertices
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of G that can reach some vertex in S via a path of length at most d. Note that
since paths of length zero are allowed, we have S ⊆ Nd+

G [S]∩Nd−
G [S]. We write

Nd+
G [v] and Nd−

G [v] whenever S = {v}.
For a vertex subset U ⊆ V (G), we denote by G[U ] the graph induced by U ,

that is the graph obtained from G where we only keep the vertices in U and
the edges incident on them. We write G − U for the graph G[V (G) \ U ] and
for a singleton vertex set {v} we write G − v instead of G − {v}. For an edge
uv we write G + uv and G − uv for the graph obtained by adding or removing
the edge uv, respectively. A cycle C is an induced cycle if the graph G[V (C)]
is isomorphic to a cycle and a path P is an induced path if the graph G[V (P )]
induces a path. We call a u-v-path almost induced if P is an induced path in
G− vu. Slightly abusing notation, when u, v are distinct vertices on an induced
cycle C, we will say that C decomposes into an induced u-v-path and an induced
v-u-path, even though this is not true if uv ∈ E(G), in which case the u-v-path
is only almost induced.

We call a set S ⊆ V (G) a directed feedback vertex set, dfvs for short, if G−S
does not contain any (directed) cycles. An input of the Directed Feedback
Vertex Set problem consists of a graph G and a positive integer k. The goal
is to determine whether G admits a dfvs of size at most k. We will constantly
make use of the following simple lemma.

Lemma 2.1. Let G be a graph without induced cycles of length greater than d
and let k be a positive integer. Then, we can compute in polynomial time either a
dfvs of size at most dk or decide that there does not exist a dfvs of size at most k
in G.

Proof. By greedily packing induced (pairwise) vertex-disjoint cycles we can find
at most k cycles (each consisting of at most d vertices), otherwise we can conclude
that no solution of size at most k exists. Then, all other (non-packed) induced
cycles intersect one of the packed cycles since G does not contain induced cycles
of length greater than d.

Observe that every cycle contains an induced cycle. Hence, even though we
cannot decide efficiently whether a vertex lies on an induced cycle we can effi-
ciently pack induced pairwise vertex-disjoint cycles as needed.

A hypergraph (also called a set system) G consists of a (non-empty) vertex set
V (G) and hyperedge set E(G) = {S1, . . . , Sm}, where Si ⊆ V (G) for all i ≤ m.
For a vertex subset U ⊆ V (G), we denote by G[U ] the hypergraph G induced
by U , that is, the hypergraph with vertex set U and hyperedge set {Si ∈ E(G) |
Si ⊆ U}. Note that we only keep those hyperedges that are fully contained in U .
A hitting set of a hypergraph G is a set H ⊆ V (G) such that H ∩ Si 6= ∅ for
all i ≤ m. In other words, H contains at least one vertex from every hyperedge.
The input of a Hitting Set instance consists of a hypergraph G and a positive
integer k, where E(G) explicitly enumerates all sets. The goal is to determine
whether G admits a hitting set of size at most k. Given a graph G, a directed
feedback vertex set in G corresponds one-to-one to a hitting set for the set
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system G where V (G) = V (G) and E(G) = {V (C) | C is an induced cycle in G}.
In the following, with any graph G we associate the corresponding hypergraph G.
We call G vertex induced if there are no two sets S, S′ ∈ E(G) with S′ ⊆ S.

2.1 Standard reduction rules

We present standard reduction rules from the literature, of which many are
instantiations of standard rules for Hitting Set. We also list and attribute
special cases that may be more efficiently computable. These rules will be used
in the later sections.

The first rule is presented, e.g., as Rule 1 in [FWY09].

Rule DFVS 1. If v ∈ V (G) lies on a loop then add v to the solution, remove v
from G, and decrease the parameter by one.

The next rule is based on a folklore rule for Hitting Set, which in the
literature is often attributed to [Wei98]. If there are two vertices u, v ∈ V (G)
such that u appears in every hyperedge in which v appears then remove v. We
say that u dominates v. Removing an element from the universe of G almost
corresponds to the following operation in G. For v ∈ V (G), we write G ⊖ v for
the graph obtained by connecting all in-neighbors of v with all out-neighbors
of v and then removing v, or simply removing v if it has no in- or out-neighbors.
We say that G ⊖ v is obtained from G by shortcutting v. Shortcutting may
introduce new cycles that cannot be recovered in G by re-inserting v. However,
shortcutting cannot introduce new induced cycles (that did not exist in G). To
the best of our knowledge, this rule was not studied before in full generality in
the literature, hence we provide a proof of safeness.

Rule DFVS 2. If there are distinct vertices u, v ∈ V (G) such that u appears
on every cycle on which v appears then shortcut v in G.

For the proof of the safeness of the rule we make use of the fact that it suffices
to hit all induced cycles.

Lemma 2.2. Rule DFVS 2 is safe and can be implemented in time O(n2(n+m)).

Proof. Let S be a dfvs of G. We may assume, without loss of generality, that S
does not contain v, as we could replace it by u. That is, (S \ {v}) ∪ {u} is also
a dfvs of G.

Let C′ be an induced cycle in G⊖ v. If C′ is not affected by the shortcutting
of v, that is, if C′ does not contain an in-neighbor x and an out-neighbor y of v,
or it does contain such vertices x and y but the edge xy was already present
in E(G), then C′ is also an induced cycle of G, hence is hit by S in G and G⊖ v.
This implies that S is also a dfvs in G⊖ v.

Assume C′ contains an in-neighbor x and an out-neighbor y of v and the
edge xy is a newly introduced shortcut edge xy (in G ⊖ v). First, observe that
this edge is the unique shortcut edge on C′. Assume otherwise that C′ contains
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at least two shortcut edges xy and x′y′, say, C′ = xyPx′y′Qx. By construction,
G ⊖ v also contains the edges xy′ and x′y. Then xy′Qx is a cycle whose vertex
set is a subset of the vertex set of C′, contradicting the fact that C′ is an induced
cycle. Thus V (C) = V (C′) ∪ {v} induces a unique cycle in G. As C is induced
in G and S does not contain v by assumption, C and (consequently) C′ are hit
by S. Hence, S is also a dfvs in G⊖ v.

Conversely, let S′ be a dfvs of G ⊖ v. If C is an induced cycle of G then
V (C) \ {v} is the vertex set of a cycle in G⊖ v, and is therefore hit by S′. Note
that V (C) \ {v} is the vertex set of a cycle in G ⊖ v regardless of whether C
contains v, or an in-neighbor and an out-neighbor of v, or C is unaffected by the
shortcutting of v. Hence, S′ intersects with V (C) \ {v} in G ⊖ v and is also a
dfvs in G.

We show how the rule can be implemented efficiently. The condition that
every cycle containing v also contains u is equivalent to the condition that v
does not lie on a cycle of G− u. For each fixed pair of vertices u, v we can hence
test (by a simple breadth-first search in G − u starting from v) whether v lies
on a cycle in G− u. If it does not, we may remove v. Testing this for all pairs of
vertices takes time O(n2(n+m)).

We mention several special cases of Rule 2 that can be implemented more
efficiently. The first special case is presented, e.g., as Rule 1 in [BEG+21] and
Rule 3 in [FWY09].

Rule DFVS 2.1 If v ∈ V (G) has no in- or no out-neighbor then v can be
removed from the graph G.

A second special case occurs when u is the only in-neighbor of v or when v
is the only out-neighbor of u. The corresponding rule is presented as Rule 3
in [BEG+21] and Rule 4 in [FWY09].

Rule DFVS 2.2 If a vertex v ∈ V (G) has only one in-neighbor or one out-
neighbor then shortcut v in G.

A final special case is presented as Rule 5 in [FWY09].

Rule DFVS 2.3 If v does not lie on two cycles that are vertex-disjoint except
for v then shortcut v.

To see why Rule DFVS 2.3 is a special case of Rule 2 apply Menger’s theorem
to find a vertex u 6= v that hits all cycles on which v lies. Here, and in all future
applications of Menger’s theorem, to find a set of vertices that intersects with
all cycles containing a vertex v we construct the following graph G′. We make a
“copy” v′ of v then delete all outgoing edges of v and make them outgoing edges
of v′ instead, i.e., the out-neighbors of v become out-neighbors of v′ instead.
We complete the construction by making v′ the unique out-neighbor of v. Then,
the cycles containing v in G correspond one-to-one to the v′-v-paths in G′. By
Menger’s theorem, the size of the minimum vertex cut for v′ and v (the minimum
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number of vertices, distinct from v′ and v, whose removal disconnects v′ and v) is
equal to the maximum number of pairwise internally vertex-disjoint paths from v′

to v. By finding a minimum vertex cut (using a flow algorithm) we find a set of
vertices intersecting all cycles in G that contain v. In particular, the vertices of
a minimum cut intersect all cycles in G that are pairwise vertex-disjoint except
for v. Going back to the rule, a vertex u 6= v that hits all cycles on which v lies
must exist if there exists no two cycles that are vertex disjoint except for v. In
other words, there exist no two internally vertex-disjoint paths from v′ to v and
removing u disconnects v′ and v. This vertex u in fact dominates v.

The following sunflower-like rule was presented (in a weaker form) as Rule 3
in [BEG+21] and the special case of u = v as Rule 6 in [FWY09].

Rule DFVS 3. Let u, v ∈ V (G) and let M be a set of internally vertex-disjoint
u-v-paths. Denote by M the set of internal vertices of the paths in M (excluding u
and v). Let ℓ be a lower bound for the size of a minimum dfvs in G − M . If
|M| > k − ℓ insert the edge uv.

Observe that ℓ = 0 (realized by the empty set) is always a trivial lower bound
for G−M . This yields the following special case: whenever two vertices u and v
are connected by more than k internally vertex-disjoint paths, we may insert
the edge uv. A better bound for ℓ can be obtained using the O(log k log log k)-
approximation algorithms of Even et al. [ESS+98] or by the LP-based lower
bound presented in Section 7.

Finally, we state the following conditional rule. In Section 6.1 we present
multiple special cases of Rule 4 that are efficiently implementable.

Rule DFVS 4. If possible in polynomial time, remove all vertices and edges
that do not lie on induced cycles.

From now on we assume that all rules (except for Rule DFVS 4, since this
is not possible in general) have been applied exhaustively, i.e., in order and
reiterated after any successful application of any rule. We slightly abuse notation
and use G to denote the resulting graph.

3 DFVS in graphs without long induced cycles

We begin our study of DFVS in graphs without induced cycles of length greater
than d. In the following we assume that all graphs have no induced cycles of
length greater than d. Unfortunately, it is NP-complete to determine if a ver-
tex lies on an induced cycle [FKMP95]. In fact, this is even W[1]-hard when
parameterized by d [HH06]. By Lemma 2.1 we can approximate a small dfvs S.
As a first rule we can delete all vertices not in Nd+

G [S] ∩ Nd−
G [S]. It would be

even better to delete all vertices that do not lie on an induced path of length at
most d between two vertices u, v ∈ S (making a copy of u when dealing with the
case u = v). Since G− S is acyclic, one could hope that this is possible in time
Od(n

O(1)), however, as we show (in Lemma 8.1) even this is not possible. The
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Directed Chordless (s, v, t)-Path problem asks, given a graph G, vertices
s, v, t, and integer d, whether there exists an induced s-t-path in G of length at
most d containing v. The W[1]-hardness of the problem on general (directed and
undirected) graphs was proved in [HH06]. We show hardness on directed acyclic
graphs via a reduction from Grid Tiling. To not disturb the flow of the paper
we postpone the proof to Section 8.

We hence have to come up with “new” reduction rules that are efficiently
implementable. We start with a high-level description of our strategy as well as
the obstacles that we need to overcome. Given a reduced graph G (on which
none of the reduction rules is applicable), we first compute a dfvs S of size at
most dk as guaranteed by Lemma 2.1. Since we assume that G has no induced
cycles of length greater than d, all vertices of G that are at distance d + 1 or
more from every vertex in S can be discarded as they cannot belong to induced
cycles of length at most d that intersect with S. Hence, in what follows, we let
G = G[Nd+

G [S] ∩Nd−
G [S]] (which can be easily computed in polynomial time by

standard breadth-first searches). The vertex set of G = G[Nd+
G [S] ∩ Nd−

G [S]] is
partitioned into S and R = V (G) \ S, where |S| ≤ dk and every vertex in R
is at distance at most d to/from some vertex in S. Note that we would like to
check for each w ∈ R whether there exists an induced path of length at most d
from some u ∈ S to w and back. However, this is not possible due to Lemma 8.1,
since it implies that we cannot efficiently iterate through the vertices of R one
by one and decide if they belong to some induced path. Our solution consists
of adopting a “relaxed approach”. That is, let Idu ⊆ V (G) denote the set of all
vertices that belong to some induced cycle of length at most d that also includes
u ∈ S. We shall compute, for each vertex u ∈ S, a set W d

u ⊇ Idu. In other words,
we compute a superset, which we call W d

u , of the vertices that share an induced
cycle of length at most d with u. We call W d

u the set of d-weakly relevant vertices
for u. Most crucially, we show that each W d

u can be computed efficiently and
will be of bounded size. We let W d

S =
⋃

u∈S W d
u and we call W d

S the set of d-

weakly relevant vertices for S. It is not hard to see that G[S ∪W d
S ] is indeed an

equivalent instance (to G) as it includes all vertices that participate in induced
cycles of length at most d.

We describe the construction of W d
u for a single vertex. That is, we fix a

non-reducible directed graph G, an integer k ≥ 2, a constant d ≥ 2, a dfvs S of
size at most dk, and a vertex u ∈ S. We first construct a graph Hd

u as follows:

– We begin by setting Hd
u = G[Nd+

G [u]].
– Then, we add a new vertex v to Hd

u and make all the in-neighbors of u
become in-neighbors of v instead, i.e, u will only have out-neighbors and v
will only have in-neighbors.

– Next, we delete all vertices in Hd
u that do not belong to some directed path

from u to v of length at most d.

Note that Hd
u can be computed in polynomial time. Moreover, there exists

an induced cycle of length at most d containing u in G if and only if there
exists an induced u to v path of length at most d in Hd

u. By a slight abuse of
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Algorithm 1 Algorithm for computing weakly relevant vertices for u ∈ S

procedure WeaklyRelevant(G,S, u, d)
return Recurse(Hd

u,v, u, v, {}, d) ⊲ Returns W d
u

end procedure

procedure Recurse(H,x, z,W, d)
if |V (H) \ {x, z}| ≤ k or d == 2 then

return W ∪ (V (H) \ {x, z})
end if

Y ← VertexSeparator(H,x, z) ⊲ Recall that |Y | ≤ k and x, z 6∈ Y

W ← W ∪ Y

for y ∈ Y do

W ←W ∪Recurse(Hd−1
x,y , x, y,W, d− 1) ∪Recurse(Hd−1

y,z , y, z,W, d− 1)
end for

return W

end procedure

notation, we also denote the graph Hd
u by Hd

u,v to emphasize the source and
sink vertices. We call a directed graph k-nice whenever any two vertices x, z
are either connected by the directed edge xz or by a set of at most k pairwise
internally vertex-disjoint (directed) paths. In particular, either xz is an edge
or there exists a set Y (disjoint from {x, z}) of at most k vertices that hits
every directed path from x to z. Observe that Hd

u is indeed k-nice (since Rule 3
has been exhaustively applied on G). Given a k-nice graph Hd

u, two vertices
x, z ∈ V (Hd

u), and 2 ≤ d′ < d, we let Hd′

x,z denote the (k-nice) graph obtained

from Hd
u by deleting all incoming edges of x, deleting all outgoing edges of z,

and deleting all vertices that do not belong to a path of length at most d′ from
x to z. We are now ready to compute W d

u , for u ∈ S, recursively as described
in Algorithm 1. Recall that since Rule DFVS 3 is not applicable in G, there does
not exist k internally vertex-disjoint (directed) paths between any two vertices
of G (and any Hd′

x,z resulting from the recursive calls). Hence, whenever we
compute (via a flow algorithm) a set Y separating two non-adjacent vertices we
know that Y will be of size at most k.

Lemma 3.1. For u ∈ S, every induced cycle Cu of length at most d including u
only includes vertices that are d-weakly relevant for u, i.e., V (Cu) ⊆ W d

u .

Proof. We prove, by induction on 2 ≤ ℓ ≤ d, that every vertex of every induced
u-v-path P of length at most ℓ in Hℓ

u is contained in W ℓ
u. Recall that every

induced cycle of length at most d including u in G corresponds to an induced
path of length at most d in Hd

u. Hence, all vertices of such induced cycles belong
to W d

u , proving the statement of the lemma.
The claim is true for ℓ = 2; the only (induced) u-v-paths of length ℓ = 2

in H2
u,v involve at most k distinct vertices by Rule 3; otherwise u belongs to

k + 1 2-cycles that pairwise intersect at u and u would be removed by Rule 1.
These at most k vertices belong to W 2

u . Now assume the claim is true for some
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ℓ > 2. We prove it for ℓ + 1. As uv 6∈ E(G), there exists an u-v-separator Y of
size at most k. In particular, there is y ∈ Y ∩ V (P ), say y is the j-th vertex
on P when walking from u, 1 ≤ j ≤ ℓ. Then P = P1P2, where P1 has length
1 ≤ j ≤ ℓ and P2 has length ℓ + 1 − j ≤ ℓ. By the induction hypothesis, the
vertices of P1 are contained in Recurse(Hℓ

u,y , u, y,W, ℓ) and the vertices of P2

are contained in Recurse(Hℓ
y,v, y, v,W, ℓ). By construction, W ℓ+1

u contains the
vertices of both of these sets, as needed to conclude the proof.

Lemma 3.1 immediately implies the safeness of the following rule.

Rule DFVS 5. If a vertex w 6∈ S is not d-weakly relevant for some vertex u ∈ S
then remove w from G.

It remains to prove that the rule can be efficiently implemented and that its
application leads to a small kernel.

Lemma 3.2. For u ∈ S and 2 < ℓ ≤ d we have |W ℓ
u| ≤ k(2|W ℓ−1

u | + 1) ≤
2ℓ−1kℓ−1 (assuming k ≥ 1).

Proof. The claim follows by induction. For ℓ = 2 we have |W 2
u | ≤ k. By the recur-

sive definition of W ℓ+1
u we have |W ℓ+1

u | ≤ k(2|W ℓ−1
u |+ 1) ≤ (2ℓkℓ − 2k)/(4k − 2)

≤ (2ℓkℓ)/(4k − 2) ≤ (2ℓkℓ)/(2k) ≤ 2ℓ−1kℓ−1.

Lemma 3.3. Rule DFVS 5 is safe and, if 2dkd ≤ nO(1), it can be implemented
in polynomial time.

Proof. For each u ∈ S we simply compute the set W d
u by applying Algorithm 1.

Each run of the algorithm requires 2d−1kd−1nO(1) time in the worst case. Since
|S| ≤ kd, the total running time is 2dkdnO(1) in the worst case. Hence, if 2dkd ≤
nO(1) we have 2dkdnO(1) ≤ nO(1), as needed.

Theorem 3.1. DFVS parameterized by solution size k and restricted to graphs
without induced cycles of length greater than d admits a kernel with 2dkd vertices
computable in polynomial time.

Proof. Either 2dkd > n, in which case we are done. Otherwise, the rule is effi-
ciently applicable and yields a kernel of the claimed size.

Finally, we further study the structure of kernelized instances and count how
many induced cycles we can find. Our key tool is the classical sunflower lemma.
A sunflower with ℓ petals and a core Y is a collection of sets S1, . . . , Sℓ ∈ E(G)
such that Si ∩ Sj = Y for all i 6= j ≤ ℓ. The sets Si \ Y are called petals and we
require none of them to be empty (while the core Y may be empty). Erdös and
Rado [ER60] proved in their famous sunflower lemma that every hypergraph
with edges of size at most d with at least sun(d, k) = d!kd edges contains a
sunflower with at least k + 1 petals. Kernelization for d-Hitting Set based on
the sunflower lemma yields a kernel with at most O(d!kd) sets on hypergraphs
with hyperedges of size at most d, see e.g. [FK15, VB14]. We can prove the
following lemma.
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Lemma 3.4. Kernelized instances of DFVS contain at most d3dkd induced cy-
cles of length at most d.

Proof. We consider the hypergraph G of induced cycles. We prove that G does not
contain a sunflower with more than (d/2)2k petals (each petal of size at most d).
By the sunflower lemma, G contains at most sun(d, (d/2)2k) = d!((d/2)2k)d =
d!(d/2)2dkd ≤ d3dkd hyperedges (of size at most d), as claimed.

A sunflower in G corresponds to a set of induced cycles in G of length at
most d that share a common core. If the core has the elements {v1, . . . , vc}, then
each petal S of the sunflower completes the vertices v1, . . . , vc to a cycle CS .
Observe that when two vertices vi, vj are connected by an edge, say vivj ∈ E(G),
then they appear in that order on every cycle CS , and we have vjvi 6∈ E(G) as
this would contradict the fact that the cycles are induced. Hence, the vertices
v1, . . . , vc can be partitioned into maximal path segments P1, . . . , Pt such that
the vertices of each Pi are connected consecutively as a path and such that there
are no edges between Pi and Pj for i 6= j. Each of the cycles CS connects the path
segments in some order using the petal vertices (the case t = 1 is the simplest
so we consider the case t > 1). Note that if the path segments Pi and Pj are
connected in that order, then the connection is via the last vertex of Pi and the
first vertex of Pj .

Observe that t ≤ d/2, as each cycle has length at most d and for every two
consecutive path segments there must be at least one petal vertex connecting
the two. Now, if there is a sunflower with more than (d/2)2k petals, then one
of the possible (d/2)2 pairs of path segments must be connected by more than
k paths. Since the connection is always between the last vertex v of the first
segment and the first vertex w of the second segment, there are more than k
disjoint paths connecting v and w. As Rule 3 can no longer be applied, there
is a direct edge between v and w, contradicting the fact that the cycles of the
sunflower are induced.

Of course for small values of d we can prove better bounds, however, they can
improve the bounds of Lemma 3.4 only up to the constants depending on d. A
special case of Rule 3 for 2-cycles is the well-known high-degree rule for Vertex
Cover: if a vertex v belongs to more than k distinct 2-cycles (assuming no
duplicate edges) then add v to the solution and decrement the parameter by one.
We immediately derive the following bound on the number of 2-cycles.

Lemma 3.5. Kernelized instances of DFVS contain at most k2 cycles of length 2.

Lemma 3.6. Kernelized instances of DFVS contain at most k3 induced cycles
of length 3.

Proof. Assume there are more than k3 induced cycles of length 3. In any dfvs
of size at most k, there must exist a vertex v1 that hits a 1/k fraction of these
cycles, i.e., v1 must intersect with more than k2 of the induced cycles of length 3.
We fix such a v1 and consider all induced 3-cycles containing v1.
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For every in-neighbor v2 of v1, i.e., for every edge v2v1 ∈ E(G), we can have
at most k (distinct) vertices v3 such that v1v3, v3v2 ∈ E(G); as otherwise, by
Rule 3, v1v2 ∈ E(G) and the cycles are not induced. Similarly, for every out-
neighbor v2 of v1, i.e., for every edge v1v2 ∈ E(G), we can have at most k
(distinct) vertices v3 such that v2v3, v3v1 ∈ E(G); as otherwise, again by Rule 3,
v2v1 ∈ E(G) and the cycles are not induced.

Since v1 does not lie on k+1 cycles that pairwise intersect only at v1 after the
application of Rule 3, by Menger’s theorem there is a set of at most k vertices
(different from v1) that hits all cycles containing v1. Hence, at most k (in or out)
neighbors of v1 hit all induced 3-cycles containing v1. Combined with the fact
that each of those neighbors can belong to at most k induced 3-cycles contain-
ing v1, this implies that v1 belongs to at most k2 induced cycles of length 3,
contradicting the fact that v1 must hit more than k2 induced 3-cycles for a dfvs
of size k to hit more than k3 induced 3-cycles.

In fact the bounds of Lemma 3.4 are optimal up to factors depending only
on d. Consider for example the graph on vertices vi,j for 1 ≤ i ≤ d, 1 ≤ j ≤ k.
Connect vi,j with vi+1,ℓ, 1 ≤ i ≤ d, 1 ≤ j, ℓ ≤ k, where we compute i + 1
modulo d. This graph on dk vertices has a dfvs of size k. None of the presented
reduction rules is applicable. Finally, it has kd cycles.

4 Nowhere dense classes without long induced cycles

We now improve the general kernel construction for DFVS on graphs without
induced cycles of length greater than d by further restricting the class of (the
underlying undirected) graphs. We obtain a kernel with Od(k) vertices on classes
with bounded expansion and Od,ε(k

1+ε) vertices, for any ε > 0, on nowhere dense
classes of graphs (when we say G belongs to a class C of graphs we in fact mean
that the underlying undirected graph belongs to C ). We present the proof for
nowhere dense classes since it subsumes the bounded expansion case. To keep
the presentation clean we omit the details for the latter case since the required
modifications are negligible. We refer the reader to [NDM08,NdM11] for formal
definitions of bounded expansion and nowhere dense classes of graphs. We only
need the following properties, which will also motivate our additional reduction
rule. Recall that every class of bounded expansion is also nowhere dense. For
every nowhere dense class of graphs C there exists a positive integer t > 0 such
that Kt,t (the complete biparite graph with t vertices in each part) is not a
subgraph of any G ∈ C .

Let us fix an approximate solution S as described in Lemma 2.1. We build a
projection closure around our approximate solution S. This is possible in nowhere
dense classes as stated in the next lemma.

Let X ⊆ V (G) and let u ∈ V (G)\X . The undirected d-projection of u onto X
is defined as the set Πd(u,X) of all vertices w ∈ X for which there exists an
undirected path P in G that starts in u, ends in w, has length at most d, and
whose internal vertices do not belong to X .
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Lemma 4.1 ( [EGK+17]). Let C be a nowhere dense class of graphs. There
exists a polynomial time algorithm that given a graph G ∈ C , d, ε > 0 and
X ⊆ V (G), computes the d-projection-closure of X, denoted by X◦, with the
following properties:

1. X ⊆ X◦,
2. |X◦| ≤ κd,ε · |X |1+ε for a constant κd,ε depending only on d and ε,
3. |Πd(u,X

◦)| ≤ κd,ε · |X |ε for each u ∈ V (G) \X◦, and
4. |{Πd(u,X) : u ∈ V (G) \X◦}| ≤ κd,ε · |X |1+ε.

We need the following strengthening for ℓ-tuples [PST18]. For a set X ⊆ V (G)
and an ℓ-tuple x̄ of vertices we call the tuple (N [x̄1] ∩ X, . . . , N [x̄ℓ] ∩ X) the
undirected projection of x̄ onto X . We say that X̄ = (X1, . . . , Xℓ) is realized as
a projection if there is a tuple x̄ whose projection is equal to X̄ .

Lemma 4.2 ( [PST18]). Let C be a nowhere dense class of graphs and let ℓ
be a natural number. Let G ∈ C and X ⊆ V (G). Then, for every ε > 0 there
exists a constant τℓ,ε such that there are at most τℓ,ε · |X |ℓ+ε different realized
undirected projections of ℓ-tuples.

Let X ⊆ V (G) and let x, y ∈ X . Let P = u1, . . . , uℓ be an almost induced x-y-
path with |V (P )| = ℓ ≤ d and let ui ∈ V (P ). Then, the X-path-projection profile
of (P, u) is the tuple (i, N−(u1)∩X,N+(u1)∩X, . . . , N−(uℓ)∩X,N+(uℓ)∩X).
The X-path-projection profile of vertex u is the set of all X-path-projection
profiles (P, u), where P is any almost induced x-y-paths on at most d vertices
and x, y ∈ X are any two vertices in X . Two vertices u, v are equivalent over X
if they have the same X-path-projection profiles.

Lemma 4.3. Let C be a nowhere dense class of graphs and let t > 0 be some
fixed positive integer such that Kt,t 6⊆ G, for all G ∈ C . Let G ∈ C and
X ⊆ V (G). Then, for every ε > 0, there exists a constant χd,t,ε such that the
number of X-path-projection profiles for u ∈ V (G) \ X is bounded by χd,t,ε ·
|X |d+ε.

Proof. We have d choices for the number i. By Lemma 4.2 we have at most
τℓ,ε|X |ℓ+ε different undirected projections of ℓ-tuples. If the undirected projec-
tion of a single vertex v within an ℓ-tuple has size smaller than t (|N [v] ∩X | ≤ t− 1),
then even though we can have many vertices with the same undirected projection,
there are at most 2t−1 possible ways of orienting this undirected projection to
obtain a directed projection; orienting an undirected projection N [v]∩X yields a
directed projection (N−[v]∩X,N+[v]∩X). Otherwise, when |N [v]∩X | ≥ t, we
can have at most t− 1 other vertices with the same undirected projection; this
follows from the fact that G does not contain Kt,t as a subgraph. Consequently,
there are at most t−1 possible orientations of N [v]∩X whenever |N [v]∩X | ≥ t.
Putting it all together, we know that any undirected projection (of any size) can
be oriented in at most 2t−1 different ways. Summing over all possible choices of
ℓ ≤ d, we get at most d2 ·2dt ·τd,ε · |X |d+ε X-path-projection profiles. To conclude
the proof, we define χd,t,ε as d2 · 2dt · τd,ε.
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We now state a new reduction rule, which depends on a constant c that we
fix later.

Rule DFVS 6. Assume we can find in polynomial time sets B,X ⊆ V (G) such
that

1. the d+ 1-neighborhoods in G−X of distinct vertices from B are disjoint,
2. every induced cycle using a vertex of Nd

G[B] also uses a vertex of X,
3. vertices in B are pairwise equivalent over X, i.e., they have the same X-

path-projection profile (in particular, if one vertex of B lies on an x-y-path
of length ℓ ≤ d, then all vertices of B do as well), and

4. |B| > c+ d+ 1 and |X | ≤ c.

Then, choose an arbitrary vertex of B and delete it from G.

Lemma 4.4. Rule 6 is safe.

Proof. Denote by G′ the graph obtained after one application of the rule with
sets B,X ⊆ V (G), where |B| > c+ d+ 1 and |X | ≤ c. Let u ∈ B be the deleted
vertex. Since the rule only removes a vertex it is clear that every dfvs S of G is
also a dfvs of G′. It remains to show that for every dfvs S′ of G′ there exists a
dfvs of G that is not larger than S′.

Let Cu be an induced cycle in G going through u such that |V (Cu)| ≤ d. All
other induced cycles (that do not contain u) are also induced cycles in G′ and
are hence hit by S′. By assumption, every induced cycle including a vertex of
Nd

G[B], in particular u, also includes at least one vertex of X . Pick x, y ∈ X
(possibly x = y) such that Cu includes x, u, y in that order and such that no
other vertices of X appear in between x and y (in Cu).

Fix the x-u-path Pxu and the u-y-path Puy that are subpaths of Cu. Let Pu =
PxuPuy . Since Cu is an induced cycle, if Cu contains vertices of X \ {x, y} then
these other vertices do not appear in the X-path-projection profile of (Pu, u).

Since all v ∈ B have the same X-path-projection profile, for each v 6= u there
are paths Pxv from x to v and Pvy from v to y such that Pv = PxvPvy and (Pv, v)
has the same X-path-projection profile as (Pu, u). Since the d+1-neighborhoods
in G−X of all vertices of B are pairwise disjoint, all of these paths are pairwise
vertex disjoint except for x and y and at most d vertices v ∈ B \ {u} can have
other vertices of V (Cu) \X that are in the 1-neighborhood of Pv. Since all these
pairs (Pv, v), v 6= u, have the same X-path-projection profile as (Pu, u), just like
(Pu, u), vertices in (V (Cu)∩X) \ {x, y} do not appear in the X-path-projection
profile of (Pv, v). Because there are at least c+ d+ 1 vertices in B \ {u}, we get
c+1 induced x-y-paths that are pairwise vertex disjoint except for x and y in G′

and that are not adjacent to vertices of V (Cu) \ {x, y}. Hence, for every v ∈ B
we get an induced cycle Cv on at most d vertices by replacing Pu by Pv.

Assuming that S′ is not a dfvs in G, the vertices in V (Cu) \ V (Pu) are not
hit by S′. Then, all the (at least c + 1) cycles Cv are hit on the paths Pv, i.e.,
S′ ∩ V (Cv) ⊆ V (Pv). All vertices of S′ that hit the cycles Cv on Pv, call those
vertices Y , lie in the d-neighborhood of v in G−X . Hence, by assumption, they
do not hit any cycles that do not also go through X . Then, (S′ \Y )∪X is a dfvs
of G of size at most |S′|; as |Y | ≥ c+ 1 and |X | ≤ c. This completes the proof.
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Lemma 4.5. Given a graph G, X ⊆ V (G) and u ∈ V (G), we can test in time
Od,ε(n

O(1)) whether every induced cycle (on at most d vertices) using a vertex
of Nd

G[u] also uses a vertex of X. Furthermore, we can decide in the same time
bound if two vertices u, v have the same X-path-projection profile.

Proof. We apply the efficient first-order model checking algorithm of [GKS17].
To do so, we first mark the set X using a unary predicate to make it accessible
to first-order logic. Both properties are easily expressible by a first-order formula
whose length depends only on d.

Nowhere dense classes of graphs are uniformly quasi-wide [NdM11]. A class
of graphs is uniformly quasi-wide if for every q there exists a constant s and
a function N(m) such that the following holds. If G ∈ C and A ⊆ V (G) has
size at least N(m), then there exists a set Y ⊆ V (G) of size at most s and
a set B ⊆ A \ Y of size at least m such that all distinct vertices of B have
disjoint q-neighborhoods in G − Y . The best bounds for the function N are
given in [KRS19,PST18]. It is important that the function is polynomial, that
is, N(m) = mt for some constant t.

Theorem 4.1. Rule 6 can be efficiently applied until the reduced graph has
Od,ε(k

1+ε) vertices.

Proof. Let N(m) and s be the function and constant witnessing that C is uni-
formly quasi-wide for parameter q = 2d. Assume N(m) = mt. Recall that S
is an approximate solution of size at most dk. Let δ > 0 be a constant that
we determine later. We build the projection closure S◦ ⊇ S for parameters 2d
and δ, which by Lemma 4.1 is of size at most κ2d,δ ·(dk)

1+δ and such that the 2d-
projection of each v ∈ V (G) \S◦ has size at most κ2d,δ · (dk)

δ. Let χ2d,t,δ be the
constant from Lemma 4.3. Define c for the application of Rule 6 as κ2d,δ ·(dk)

δ+s.

Assume |V (G)| > κ2d,δ(dk)
1+δ + κ2d,δ ·N(χd,t,δ · c

δ ·(c+ d+ 2))(dk)1+δ. We
show that we can efficiently apply Rule 6.

First, there are at least κ2d,δ ·N(χd,t,δ ·(c+d+2))(dk)1+δ vertices in V (G)\S◦.
Moreover, every induced cycle using a vertex u ∈ V (G) \ S◦ uses a vertex of
Π2d(u) ⊆ S◦. This is true because G − S is acyclic and all paths from u to S
must use a vertex of Π2d(u). In fact, this is true for every vertex in the d-
neighborhood of u in G−Π2d(u); this is why we consider parameter 2d instead
of d.

Since there are at most κ2d,δ · (dk)
1+δ different projection classes there is at

least one class A with at least N(χd,t,δ ·c
δ ·(c+d+2)) vertices. We denote the set

of projection vertices by Π ⊆ X . We apply uniform quasi-wideness to A to find a
set Y of size at most s and a set B′ ⊆ A\Y containing at least χd,t,δ ·c

δ ·(c+d+2)
vertices that have pairwise disjoint 2d-neighborhoods in G− Y . Let X = Π ∪ Y .
Note that X has size at most κ2d,δ · (dk)

δ + s = c.

By Lemma 4.3 there are at most χd,t,δ · c
δ many different X-path-projection

profiles, hence, we find a set B ⊆ B′ of size greater than c+d+1 of vertices that all
have the same X-path-projection profile. Hence, all assumptions to apply Rule 6
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are satisfied and we can still carry out the rule to decrease the size of V (G). As
all lemmas can be applied efficiently, Rule 6 with the given sets B and X can
also be applied efficiently.

It remains to define the constant δ. We need N(χd,t,δ ·c
δ ·(c+d+2))(dk)1+δ ∈

Od,ε(k
1+ε). By assumption we have N(m) = mt, hence, N(χd,t,δ · c

δ · (c+ d+2))
(dk)1+δ ≤ (χd,t,δ · c

δ · (c+ d+ 2))t(dk)1+δ ≤ (χd,t,δ · (κ2d,δ · (dk)
δ + s)δ · ((κ2d,δ ·

(dk)δ+s)+d+2))t(dk)1+δ. It hence suffice to define δ such that (δ+δ2)t+1 ≤ ε.

5 DFVS in planar graphs without long cycles

One may wonder whether the stronger assumption that a graph does not contain
long cycles, induced or non-induced, leads to even more efficient algorithms. We
show that this is indeed the case when considering planar graphs. We show that
strongly connected planar graphs without cycles of length d have treewidth O(d).
We observe in the next section (Observation 2) that after the application of
Rule DFVS 7, weak components are equal to strong components. Hence, the
DAG of strong components in fact is a tree. Then, if each strong component
has bounded treewidth, we can combine the tree decompositions of the strong
components with the tree of strong components to derive that the whole graph
after application of Rule DFVS 7 has bounded treewidth. We can then use the
algorithm of Bonamy et al. [BKN+18] to solve the instance in time 2O(d) · nO(1).

Lemma 5.1. Let G be a strongly connected graph and let u, v ∈ V (G). Let P be
an undirected path between u and v in the underlying undirected graph. If G does
not have cycles of length greater than d, then it contains a (directed) u-v-path Q
such that every vertex of Q is at distance at most d from some vertex of P .

Proof. Assume P = v1 . . . vℓ. For each vivi+1 fix a cycle Ci of length at most d
containing both vi and vi+1. Such a cycle must exist as G is strongly connected
and does not contain cycles longer than d. We can now appropriately stitch
subpaths from these cycles to find a u-v-path Q in G. It is immediate that every
vertex of Q is at distance at most d from some vertex of P .

Theorem 5.1. Let G be a strongly connected planar graph without cycles of
length greater than d. Then, G has treewidth at most 30d.

Proof. As proved in [RST94], every planar graph of treewidth at least 6t contains
a grid of order t as a minor. Assume towards a contradiction that G has treewidth
greater than 30d. Then it contains a grid of order 5d as a minor. We fix four
vertices v1, v2, v3, v4 from the four corner branch sets of the inner sub-grid minor
of order 3d and undirected paths Pi,(i mod 4)+1 leading from vi to v(i mod 4)+1

using only vertices of branch sets of the boundary of the grid minor model. By
Lemma 5.1 and because G is planar we find vi-v(i mod 4)+1-paths that use only
vertices inside the regions defined by the boundary of the grid minor of order 5d
and the boundary of the central sub-grid minor of order d. By gluing the paths
we find a closed walk which contains a cycle that fully encloses the central grid
minor of order d. This cycle has length at least 4d, contradicting the fact that G
has no cycles longer than d.
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6 Long induced cycles

Since in general we cannot efficiently implement Rule 4, in this section we provide
sufficient conditions to decide whether a vertex or an edge lies on an induced
cycle, and thereby approximate the effect of the rule. Let us first define a bit
more notation.

It will be convenient to partition the edge set of G into red and blue edges.
We say that an edge uv ∈ E(G) is red if vu /∈ E(G), and say that uv is blue if
vu ∈ E(G), i.e., if uvu is a cycle in G. By R(G) ⊆ E(G), we denote the set of all
red edges of G, and by B(G) ⊆ E(G) we denote the set of all blue edges of G. We
define the blue neighborhood of a vertex v ∈ V (G) as BG(v) = N+

G (v) ∩N−
G (v),

i.e., the set of neighbors of v that are connected by blue edges. Similarly, let
RG(v) = NG(v) \ BG(v), that is, the set of neighbors of v that are connected
by red edges. If G is clear from the context, we drop the subscript G in all of
the above definitions. The degree (resp. in-degree, out-degree, blue-degree) of a
vertex v is defined as |N(v)| (resp. |N−(v)|, |N+(v)|, |B(v)|). Observe that a
minimum dfvs S of a graph G with only blue edges is the same as a minimum
vertex cover in the underlying undirected graph, as S hits all edges (every blue
edge is a cycle of length two), i.e., G− S is edgeless.

Observe that no graph G has an induced cycle containing both a blue and a
red edge, as any blue edge uv already implies a cycle of length two. Hence, as
every blue edge lies on an induced cycle by definition, it suffices to check whether
red edges lie on induced cycles or not.

Observation 1 If an edge uv ∈ R(G) does not lie on an induced cycle in
G[R(G)] then uv can be removed from G.

We will present rules that are special cases of Rule 4 but can be implemented
efficiently.

Rule DFVS 7. Let uv ∈ R(G) and let G′ be the graph induced by R(G) where
all vertices z with uz ∈ E(G) or zv ∈ E(G) have been removed. If there does not
exist a v-u-path in G′ then remove uv from G.

Lemma 6.1. Rule DFVS 7 is safe and can be implemented in time O(m(n+m)).

Proof. By Observation 1, if uv does not lie on an induced cycle it may be removed
from G. Assume uv lies on an induced cycle C = uP , where P is an induced
v to u path. Then P cannot contain a vertex z with uz ∈ E(G) or zv ∈ E(G).
Assume otherwise, say, P = QzR. Then uzR or vQzv, respectively, are subcycles
of C, contradicting the fact that C is an induced cycle. Hence, if there does not
exist a v-u-path in G′ then uv does not lie on an induced cycle and may be
removed.

For any edge uv we can construct G′ from G in time O(n + m) and per-
form a depth-first search. Iterating through all edges leads to a running time of
O(m(n+m)).
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Special cases of Rule DFVS 7 that can be checked even more efficiently are
the following.

Rule DFVS 7.1 If uv ∈ R(G) and u has no incoming red edge or v has no
outgoing red edge then remove uv.

Rule DFVS 7.2 If vw ∈ R(G) and if for all u ∈ N−(v) we also have uw ∈
R(G) then remove vw. If uv ∈ R(G) and if for all w ∈ N+(v) we also have
uw ∈ R(G) then remove uv.

Observe that, in particular, after the application of Rule DFVS 7 every edge
of G lies on a cycle. After the applications of these rules it makes sense to recom-
pute strong components. The following observation shows that it now suffices to
apply a regular component search (for weak components).

Observation 2 After the exhaustive application of Rule DFVS 7 every weak
component is strongly connected.

Proof. Let u1 . . . ut be a path in the undirected underlying graph of G. Each of
the edges uiui+1 lies on a directed cycle Ci of G. Then in C1 . . . Ct−1 we find a
directed u1-ut-path; we first find a directed walk by appropriately gluing parts
of the cycles and then find a path contained in the walk.

We now formulate a modified depth-first search rule. We say that a cycle C =
v1, . . . , vℓ for ℓ ≥ 4 is induced on an initial segment of length i (for some 3 ≤ i < ℓ)
if v1, . . . vi induce a path in G[V (C)] and only vi can have out-neighbors among
vi+1, . . . , vℓ−1 and only v1 can have in-neighbors among vi+1, . . . , vℓ−1. Note that
this definition depends on the vertex that we distinguish as v1 on the cycle. Note
also that by definition every cycle of length three is induced on an initial segment
of length three. We say that an edge uv ∈ R(G) lies on a cycle that is induced
on an initial segment of length i if there exists a cycle C = v1, . . . , vℓ that is
induced on an initial segment of length i such that (v1, v2) = (u, v).

Lemma 6.2. If uv ∈ R(G) does not lie on a cycle that is induced on an initial
segment of length i for some i ≥ 3, then uv does not lie on an induced cycle of G.
Furthermore, we can test this property in time O(ni−2(n+m)).

Proof. The first statement is immediate from the fact that an induced cycle of
length ℓ is induced on an initial segment of length ℓ − 1 (independent of the
choice of initial vertex v1). Moreover, if a cycle is induced on an initial segment
of length i, then it is induced on an initial segment of length j for every 3 ≤ j ≤ i.

For the running time we consider an algorithm that non-deterministically
guesses vertices v3, . . . , vi such that v1, . . . , vi is an induced path in G. We remove
all vertices that are out-neighbors of one of the vj for 1 ≤ j ≤ i − 1 and all
vertices that are in-neighbors of one of the vj for 2 ≤ j ≤ i and carry out a
regular depth-first search from vi. If we find v1 in this search, say by visiting
the vertices vi+1, . . . , vℓ = v1 we return the cycle v1, . . . , vℓ, which is induced
on the initial segment of length i by construction. Otherwise, we return that uv
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does not lie on such a cycle. A deterministic version of the algorithm iterates
through all possible sets v3, . . . , vi in time O(ni−2). For each set, the algorithm
constructs the graph with deleted vertices and carries out a depth-first search in
time O(n+m).

We will prove later that testing for containment in cycles that are induced
on an initial segment of length three subsumes many non-trivial reduction rules
of Bergougnoux et al. [BEG+21]. Hence, we state the following reduction rule,
though rules with larger i may be interesting to consider.

Rule DFVS 8. If an edge uv ∈ R(G) does not lie on a cycle that is induced on
an initial segment of length three then remove uv from G.

Lemma 6.3. Rule 8 is safe and can be implemented in time O(nm(n+m)).

Proof. The safeness of the rule is immediate by Observation 1 and Lemma 6.2.
The running time is obtained by iterating over all edges of G.

The following corollary shows that Rule 8 generalizes the two previous reduc-
tion rules, i.e., Rule DFVS 7.1 and Rule DFVS 7.2.

Corollary 6.1. After exhaustive application of Rule 8 every edge lies on a cycle
that is induced on an initial segment of length three. In particular, for every
vw ∈ R(G) there is an incoming red edge uv ∈ R(G) and an out-going red edge
wz ∈ R(G). Furthermore, if uv ∈ R(G) is an incoming edge of v, then there
is some uw 6∈ E(G) and if wz ∈ R(G) is an out-going edge of w, then there is
some vz 6∈ E(G). Finally, every weak component is strongly connected.

6.1 Analysis of kernel size

In this section we prove that Rule 1, Rule 2, Rule 3 and Rule 8 lead to a kernel of
size O(f4), where f is the size of a minimum feedback vertex set in the underlying
undirected graph. In fact, we prove the stronger bound of O(f3k). Our analysis
is based on the analysis of Bergnouxnoux et al. [BEG+21]. Essentially, we prove
that all complicated rules of Bergnouxnoux et al. are subsumed by Rule 8. In
the following, fix an undirected feedback vertex set F (which does not have to
be computed and in particular may be assumed to be minimum). We prove that
the rules lead to a kernel of size O(|F |3k). We (almost) follow the terminology
of Bergnouxnoux et al. For the sake of clarity, when it suffices to apply a special
case of one of the above rules, we refer to the special case.

Let B be the set of blue vertices, i.e., those vertices that are incident to at
least one blue edge. By Lemma 3.5, we may assume that there are at most k2

blue edges, hence, |B| ≤ 2k2 (otherwise we have a negative instance). Note that
the standard argument applicable for Vertex Cover that we may assume that
there are at most k2 blue vertices cannot be applied here, since there can be
additional red edges. Let A = V (G) \ (F ∪B).



22 J. Dirks et al.

An ordered pair (u, v) of (not necessarily distinct) vertices of F is called a
potential edge of F . If (u, v) 6∈ E(G), then it is a non-edge of F . If u = v, then
(u, v) is called a loop. A vertex w ∈ V (G) \ (F ∪ B) = A directly contributes
to a potential edge (u, v) if (u,w) ∈ E(G) and (w, v) ∈ E(G). Note that unlike
Bergougnoux et al., no vertex of A can directly contribute to a loop (the case
u = v), these vertices are incident with a blue edge and have already been
collected in B. The following lemma follows from the fact that Rule 3 is no
longer applicable.

Lemma 6.4. For every non-edge (u, v) of F there are at most k vertices that
directly contribute to (u, v). Consequently, there are at most |F |(|F |−1)k vertices
in A that directly contribute to a non-edge of F .

We follow the approach of Bergnouxnoux et al. to bound the number of
vertices in A. Denote by A0, A1, A2 and A≥3 the sets of vertices of A that have
a total degree 0, 1, 2 and at least 3, respectively, in G− (F ∪B).

Lemma 6.5. Every vertex in A0 ∪ A1 directly contributes to a non-edge of F .

Proof. First observe that because Rule DFVS 2.2 cannot be applied, every ver-
tex has at least 2 in- and 2 out-neighbors, hence, every v ∈ A0 ∪ A1 has an in-
neighbor and an out-neighbor in F . Assume that w does not directly contribute
to a loop or a non-edge. Then for every pair of in- and out-edges uw ∈ E(G)
and wv ∈ E(G) we have uv ∈ E(G) (u 6= v as otherwise w ∈ B). If w has
no in-neighbor from A (then it can have at most one out-neighbor in A), then
all edges wv with v ∈ F have been removed by Rule 7. Then w has at most
one out-neighbor and is removed either by Rule DFVS 2.1 or Rule DFVS 2.2.
Analogously, if w has no out-neighbor in A (then it can have at most one in-
neighbor from A), then all edges uw with u ∈ F have been removed by Rule 7.
Then w has at most one in-neighbor and is removed either by Rule DFVS 2.1 or
Rule DFVS 2.2.

Corollary 6.2. |A0 ∪A1| ≤ |F |(|F | − 1)k and |A≥3| ≤ |F |(|F | − 1)k − 2.

Proof. The underlying undirected graph of G[A] induces an undirected forest
and the number of vertices of degree at least 3 in an undirected forest is at
most equal to the number of leaves minus two; the number of leaves is |A1|.
Hence, we have |A≥3| ≤ |A1| − 2 ≤ |A0 ∪ A1| − 2 ≤ |F |(|F | − 1)k − 2, where
the latter inequality is a consequence of the previous two lemmas (Lemma 6.4
and Lemma 6.5).

It remains to bound the size of A2. Following the terminology of Bergnoux-
noux et al., we call a vertex w ∈ A2 a sink vertex or a source vertex if the two
neighbors of w in A are both in-neighbors or out-neighbors, respectively. Oth-
erwise we call w a balanced vertex. As Rule DFVS 2.2 cannot be applied, every
vertex of A2 has at least 2 distinct neighbors in F .

Let P = (w1, . . . , wr) be an inclusion-wise maximal directed path in G[A]
whose internal vertices are in A2. We call P a path segment in A. We call P
an outer path segment if at least one of its endpoints is not in A2 and an inner
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path segment, otherwise. Note that path segments are directed paths, which,
by maximality, can never start or end with a balanced vertex. Moreover, every
internal vertex of a path segment must be a balanced vertex.

We first bound number of outer path segments, that is, the number of path
segments with at least one endpoint in A1 ∪ A3.

Lemma 6.6. The number of outer path segments is at most 4(|F |(|F | − 1)k).

Proof. Let H be the undirected graph obtained from the undirected graph un-
derlying G[A] by contracting all edges that are incident to at least one vertex
of degree 2. Then every outer path segment runs between the endpoint of an
edge in H and an endpoint or inner vertex of the contracted path in a unique
direction, as A does not contain blue edges. Hence, the number of outer path
segments in A is bounded by twice the number of edges of H . As H is a forest
without vertices of degree two, its number of edges is equal to the number of
leaves plus the number of non-leaves minus one. As shown in Corollary 6.2 both
of these numbers are bounded from above by |F |(|F | − 1)k.

We say that a path segment P = (w1, . . . , wr) contributes to a potential edge
(u, v) of F if there are i and j, 1 ≤ i ≤ j ≤ r, such that uwi ∈ E(G) and
wjv ∈ E(G). We say that P contributes to a loop on u ∈ F if there are i and j,
1 ≤ i ≤ j ≤ r, such that uwi ∈ E(G) and wju ∈ E(G).

Lemma 6.7. Every inner path segment contributes to a non-edge or a loop of F .

Proof. Assume towards a contradiction that a non-trivial P = (w1, . . . , wr) does
not contribute to a non-edge or a loop of F . First assume that P contains at
least the inner vertex w2. Note that w1 is a source and wr is a sink in A, that is,
there is no in-neighbor of w1 in A and no out-neighbor of wr in A. On the other
hand, w2 is balanced and has only the in-neighbor w1 and out-neighbor w3 in A.
As Rule DFVS 2.3 cannot be applied anymore and w2 is not incident with a
blue edge, w2 has at least one in-neighbor u ∈ F . Consider an edge uw2 ∈ E(G),
where u ∈ F . Every cycle containing uw2 must use some wj ∈ V (P ), j ≥ 2, and
some v ∈ F with wjv ∈ E(G). As P does not contribute to a loop we have u 6= v.
Hence, uv ∈ E(G), as P does not contribute to a non-edge of F . But then the
edge uw2 would have been deleted by the application of Rule 7. As u was an
arbitrary in-neighbor from F of w2, then w2 has only the in-neighbor w1 and
out-neighbor w3, hence, should have been shortcutted by Rule DFVS 2.2.

Now assume that P does not contain an inner vertex, that is, P = (w1, w2).
As w1 is a source and w2 is a sink in A, the only in-neighbors for w1 are from F
and the only out-neighbors of w2 are from F . Hence all cycles using w1w2 have
the form w1, w2, v, . . . , u, w1, where u, v ∈ F . Consider an arbitrary such cycle.
Then u 6= v as P does not contribute to a loop of F and uv ∈ E(G) as P does
not contribute to a non-edge of F . However, this edge uv shows that the cycle
is not induced on an initial segment of length 3, and consequently, w1w2 should
have been removed by Rule 8.

Lemma 6.8. There are at most 3|F |(|F | − 1)k inner path segments.
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Proof. As shown in Lemma 6.7, every inner path segment contributes to a non-
edge or a loop of F . As every inner path segment has a source in A2 as its starting
and a sink in A2 as its ending vertex and all inner vertices are balanced vertices,
it can intersect with at most two other inner path segments (at their endpoints).
In any set X of inner path segments we can hence find |X |/3 independent inner
path segments. If there are more than 3|F |(|F | − 1)k inner path segments that
contribute to a non-edge or a loop, then we find |F |(|F |−1)k many independent
ones. Then some pair must be connected by more than k disjoint paths. Then
this pair is connected by an edge by Rule 3 and the path segment does not
contribute to it.

Corollary 6.3. Overall there are at most O(|F |2k) path segments.

Observe that all path segments are induced paths in A. Let u ∈ F and let
P = (w1, . . . , wr) be an induced directed path in A such that w1, . . . , wr−1 are
balanced in A. If uw1 ∈ E(G) and uwr ∈ E(G) and for every 1 < i < r we have
uwi 6∈ E(G), then we call P an out-segment for u. We say that an out-segment
for u denoted by P contributes to a potential edge or loop (u, v) in F if there is
an index 1 ≤ i < r such that wiv ∈ E(G) for some v ∈ F .

Lemma 6.9. Every out-segment for u contributes to a non-edge or loop of F .

Proof. Assume P is an out-segment for u that does not contribute to a non-edge
or loop. Because w1 is balanced in A, its only out-neighbor in A is w2. Hence,
every cycle C using the edge uw1 must contain the vertex wr or a vertex v ∈ F
with wiv ∈ E(G) for some i < r. Note that v 6= u because P does not contribute
to a loop. Because P does not contribute to a non-edge of F in the latter case
there is an edge uv ∈ E(G). This however, in either case, implies that the edge
uw1 is deleted by Rule 7.

Lemma 6.10. For each u ∈ F there are at most |F |k out-segments for u.

Proof. According to Lemma 6.9, every out-segment for u contributes to a non-
edge or loop of F . Note that the contribution for P = (w1, . . . , wr) is from the
(balanced) vertices w1 and wi, for some i < r. Hence, when two out-segments
contribute to the same non-edge (u, v) and intersect in wr, the contributing
paths still give rise to two internally vertex disjoint u-v-paths. Hence, there can
be at most k out-segments contributing to a non-edge (u, v). Finally, there are
at most |F | choices for v.

We can now bound the size of A2.

Lemma 6.11. |A2| ∈ O(|F |3k).

Proof. Note that every balanced and source vertex of A2 is an out-neighbor of
at least one u ∈ F and lies on at least one path segment. Fix some u ∈ F .
Every out-neighbor of u on a path segment can either be associated to the path
segment itself (if u has only one out-neighbor on the whole path segment) or
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to an out-segment. Therefore, the number of out-neighbors of u in A2 is at
most the number of path segments plus the number of out-segments for u. Both
numbers are bounded by O(|F |2k) by Corollary 6.3 and Lemma 6.10. Hence,
the total number of out-neighbors of vertices of F in A2, which is equal to the
total number of balanced and source vertices in A2, is bounded by O(|F |3k).
Combined with the fact that the number of sink vertices in A2 is also bounded
by O(|F |2k), we get the claimed bound of |A2| ∈ O(|F |3k).

Theorem 6.1. After the exhaustive application of Rule 1, Rule 2, Rule 3 and
Rule 8 we obtain a kernel with O(|F |3k) vertices.

7 LP-based approximation

We can derive the following cycles ILP for DFVS naturally from the Hitting
Set formulation. Given a DFVS instance G, we introduce a binary variable dv
for every v ∈ V (G) where dv = 1 means that v is part of the solution. The goal
is to minimize the number of variables set to 1, given that all induced cycles are
hit.

min
∑

v∈V (G)

dv

s. t.
∑

v∈V (C)

dv ≥ 1 for all induced cycles C in G

dv ∈ {0, 1} for all v ∈ V (G)

Note that this formulation can have an exponential number of contraints.
In the following, we assume that our instances contain no loops. We work with
the following equivalent order ILP of polynomial size which uses the fact that a
graph is acyclic if and only if there is a topological order on its vertex set. To be
more precise, we order the vertices linearly, minimizing the number of vertices
having an incident edge pointing in the incorrect direction. We introduce a binary
variable xuv for all distinct u, v ∈ V (G) where xuv = 1 indicates that u is smaller
than v in the order. Furthermore, we introduce a binary variable yv for every
v ∈ V (G) with the same meaning as the dv in the cycles ILP.

min
∑

v∈V (G)

yv

s. t. xuv + xvu = 1 for all distinct u, v ∈ V (G)

xuv + xvw − xuw ≥ 1 for all distinct u, v, w ∈ V (G)

xuv + yu + yv ≥ 1 for all uv ∈ E(G)

xuv, yv ∈ {0, 1} for all u, v ∈ V (G)
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The first two constraints (ensuring anti-symmetry and transitivity) yield a
linear order on V (G), and the third constraint ensures that at least one endpoint
of any edge pointing in the incorrect direction must be part of the solution. We
prove that the relaxation of the order ILP is within a constant factor of the all
cycles ILP.

Theorem 7.1. The optimal solution of the order ILP relaxation is at most 3
times smaller than the optimal solution of the cycles ILP relaxation.

Proof. Fix an optimal solution (assignment of variables) of the order ILP relax-
ation. Let C = v1 . . . vℓ be an induced cycle in G. We show that

∑
1≤i≤ℓ yvi ≥ 1/3.

First assume that all xvivi+1
= 1 for 1 ≤ i < ℓ. Then by transitivity we

have xv1vℓ = 1 and by anti-symmetry xvℓv1 = 0. Then by the third constraint
yv1 + yvℓ ≥ 1 and we are done.

Hence assume xvivi+1
= 1 − εi for some εi ≥ 0, where at least one εi > 0.

For every j ≥ i + 1 we have xvivj ≥ 1 −
∑

i≤i<q εq by transitivity. Hence,
xv0vℓ ≥ 1−

∑
1≤q<ℓ εq. Then xvℓv1 ≤

∑
1≤q<ℓ εq and yv1 + yvℓ ≥ 1−

∑
1≤q<ℓ εq.

If
∑

1≤q<ℓ εq ≤ 2/3, then yv1 + yvℓ ≥ 1/3 and C collects weight at least 1/3.
Otherwise we have

∑
1≤q<ℓ εq > 2/3. Hence, we can write

∑
1≤i<ℓ xvivi+1

=
ℓ−

∑
1≤i<ℓ εi ≥

∑
1≤i<ℓ(1− yvi − yvi+1

) = ℓ− yv1 − yvℓ − 2
∑

1<i<ℓ yi. Plugging
in the inequality we obtain 2/3 <

∑
1≤i<ℓ εi ≤ yv1 +yvℓ +2

∑
2≤i<ℓ−1 yvi . Hence,

C collects more than weight 1/3.

Denote the optimal solution value for the cycles ILP relaxation by h∗, the
optimal solution value for the order ILP relaxation by x∗, and the optimal ILP
solution value by k. Then O(k/(log k log log k)) ≤ h∗ ≤ 3x∗ ≤ 3k, where the first
inequality follows from [Sey95].

Corollary 7.1. We can approximate in polynomial time the cycles ILP relax-
ation up to factor 3.

8 Hardness of Directed Chordless Path

The Directed Chordless (s, v, t)-Path problem asks, given a graph G, ver-
tices s, v, t, and integer d, whether there exists an induced s-t-path in G of length
at most d containing v. The W[1]-hardness of the problem on general (directed
and undirected) graphs was proved in [HH06]. We show hardness on directed
acyclic graphs via a reduction from Grid Tiling.

An instance of Grid Tiling consists of an even integer k, an integer n, and
a collection S of k2 nonempty sets Si,j ⊆ [n]× [n], where 1 ≤ i, j ≤ k. The goal
is to decide whether there exists, for each 1 ≤ i, j ≤ k, a pair si.j ∈ Si,j such
that:

– If si,j = (a, b) and si+1,j = (a′, b′), then a = a′.

– If si,j = (a, b) and si,j+1 = (a′, b′), then b = b′.
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In other words, if (i, j) and (i′, j′) are adjacent in the first or second coor-
dinate, then si,j and si′,j′ agree in the first or second coordinate, respectively.
We visualize Si,j to be in a “cell” at row i and column j of a “matrix”. Observe
that the constraints ensure that the first coordinate of the solution is the same
in each column and the second coordinate is the same in each row.

Lemma 8.1. The Directed Chordless (s, v, t)-Path problem parameterized
by the length d of a path is W[1]-hard even when restricted to directed acyclic
graphs.

Proof. Given an instance of Grid Tiling, we construct an instance of Di-
rected Chordless (s, v, t)-Path as follows. We first construct a directed
acyclic graph G. For each Si,j ∈ S, 1 ≤ i, j ≤ k, we add a new set of ver-

tices Vi,j to V (G). Vi,j contains one vertex vi,ja,b for each pair si,j = (a, b) ∈ Si,j .
Then we add two new sets of vertices X = {x1, . . . , xk} and Y = {y1, . . . , yk}.
We partition X into Xodd = {xj | j is odd} and Xeven = {xj | j is even}. Simi-
larly, we partition Y into Yodd = {yj | j is odd} and Yeven = {yj | j is even}. We
now describe the edges in G:

– For every vertex xj ∈ Xodd, we add the edges xjv
1,j
a,b, for all a, b. In other

words, every vertex in V1,j is made an out-neighbor of xj , j ∈ {1, 3, . . . , k−1}.

– For every vertex xj ∈ Xeven, we add the edges v1,ja,bxj , for all a, b. In other
words, every vertex in V1,j is made an in-neighbor of xj , j ∈ {2, 4, . . . , k}.

– For every vertex yj ∈ Yodd, we add the edges vk,ja,byj , for all a, b. In other words,
every vertex in Vk,j is made an in-neighbor of yj , j ∈ {1, 3, . . . , k − 1}.

– For every vertex yj ∈ Yeven, we add the edges yjv
k,j
a,b , for all a, b. In other

words, every vertex in Vk,j is made an out-neighbor of yj , j ∈ {2, 4, . . . , k}.
– We add the edges {y1y2, y3y4, . . . , yk−1yk} ∪ {x2x3, x4x5, . . . , xk−2xk−1}.

– For odd j ∈ {1, 3, . . . , k − 1} and i ∈ [k − 1], if there exists vi,ja,b ∈ Vi,j and

vi+1,j
a′,b′ ∈ Vi+1,j such that a = a′ then add the edge vi,ja,bv

i+1,j
a′,b′ .

– For even j ∈ {2, 4, . . . , k} and i ∈ [k] \ {1}, if there exists vi,ja,b ∈ Vi,j and

vi−1,j
a′,b′ ∈ Vi−1,j such that a = a′ then add the edge vi,ja,bv

i−1,j
a′,b′ .

– For j = 1, j′ ∈ {2, 3, 4, . . . , k}, and i ∈ {1, 2, 3, . . . , k}, if there exists vi,1a,b ∈

Vi,1 and vi,j
′

a′,b′ ∈ Vi,j′ such that b 6= b′ then add the edge vi,1a,bv
i,j′

a′,b′ .

To complete the construction of the Directed Chordless (s, v, t)-Path
instance, we choose s = x1, v = y1, t = xk, and d = k(k+1)+k−1 = k2+2k−1.

Observe that G is acyclic since the edges in odd columns are all directed
“downwards” and the edges in even columns are all directed “upwards”. Moreover,
the edges connecting vertices in X or Y are all directed “rightwards”. Similarly,
the edges connecting vertices in the first column to vertices in later columns are
all directed “rightwards”. Hence, following the layout of the construction, we can
topologically order the vertices of G such that for every directed edge uv from
vertex u to vertex v, u comes before v in the ordering.
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We also note that any (s, v, t)-path in G must contain exactly one vertex from
each Vi,j as well as all vertices in X∪Y ; for a total of k2+2k vertices. Hence, any
(s, v, t)-path in G will have length exactly d. In addition, P must visit X , Y , and
the “cells” of the matrix in a unique order. That is, P must start with x1 then
visit all the cells of the first column to reach y1. After y1 the only out-neighbor
is y2. From y2, P then proceeds upwards along the second column to reach x2.
This zig-zag behavior continues until P reaches xk. In other words, P consists
of the ordered vertices s = x1, . . . , v = y1, y2, . . . , x2, x3, . . . , y3, y4, . . . , x4, x5,
. . . , yk−1, yk, . . . , t = xk.

Assume that we have a yes-instance of Directed Chordless (s, v, t)-Path
and let P be an induced (s, v, t)-path in G. The vertices of V (P )\ (X ∪Y ) corre-
spond one-to-one to pairs in S. We claim that those pairs form a valid solution
for the Grid Tiling instance. Assume otherwise. Then, either P contains two
consecutive vertices in the same column that do not agree on the first coordi-
nate or P contains two vertices in the same row that do not agree on the second
coordinate. The former case is not possible by construction; we only add edges
between consecutive vertices in the same column whenever they agree on the
first coordinate. For the latter case, we claim that it would contradict the fact
that P is induced. To see why, let i be a row containing two vertices v2, v3 that
do not agree on the second coordinate. Without loss of generality, we assume
that neither of these two vertices belongs to the first column. Let j1 and j2,
j1 < j2, denote their respective columns. Recall that P must include one vertex
v1 from Vi.1 and this vertex cannot agree with both v2, v3 on the second coordi-
nate. Hence, by construction, G either contains the edge v1v2 or the edge v1v3,
which contradicts the fact that P is induced.

Using almost identical arguments, it can be shown that whenever we have a
yes-instance of Grid Tiling we can immediately construct an induced (s, v, t)-
path in G of length exactly d, as needed.

By connecting the bottom right vertex with the top left vertex with an edge
we obtain the following corollaries of (the proof of) Lemma 8.1.

Corollary 8.1. It is W[1]-hard to decide if a vertex lies on an induced cycle of
length at most d even on graphs that become acyclic after the deletion of a single
edge.

Corollary 8.2. It is W[1]-hard to decide if a graph contains an induced cycle of
length at least d even on graphs that become acyclic after the deletion of a single
edge.
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