Abstract
We study reduction rules for Directed Feedback Vertex Set (DFVS) on instances without long cycles. A DFVS instance without cycles longer than d naturally corresponds to an instance of d -Hitting Set, however, enumerating all cycles in an n-vertex graph and then kernelizing the resulting d -Hitting Set instance can be too costly, as already enumerating all cycles can take time \(\varOmega (n^d)\). To the best of our knowledge, the kernelization of DFVS on graphs without long cycles has not been studied in the literature, except for very restricted cases, e.g., for tournaments, in which all induced cycles are of length three. We show how to compute a kernel with at most \(2^dk^d\) vertices and at most \(d^{3d}k^d\) induced cycles of length at most d (which however, cannot be enumerated efficiently). We then study classes of graphs whose underlying undirected graphs have bounded expansion or are nowhere dense; these are very general classes of sparse graphs, containing e.g. classes excluding a minor or a topological minor. We prove that for such classes without induced cycles of length greater than d we can compute a kernel with \(\mathcal {O}_d(k)\) and \(\mathcal {O}_{d,\varepsilon }(k^{1+\varepsilon })\) vertices for any \(\varepsilon >0\), respectively, in time \(\mathcal {O}_d(n^{\mathcal {O}(1)})\) and \(\mathcal {O}_{d,\varepsilon }(n^{\mathcal {O}(1)})\), respectively, where k is the size of a minimum directed feedback vertex set. The most restricted classes we consider are planar graphs without any (induced or non-induced) long cycles. We show that strongly connected planar graphs without long cycles have bounded treewidth and hence DFVS on such graphs can be solved in time \(2^{\mathcal {O}(d)}\cdot n^{\mathcal {O}(1)}\). We finally present a new data reduction rule for general DFVS and prove that the rule together with a few standard rules subsumes all the rules applied by Bergougnoux et al. to obtain a polynomial kernel for DFVS[FVS], i.e., DFVS parameterized by the feedback vertex set number of the underlying (undirected) graph.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abu-Khzam, F.N.: A kernelization algorithm for d-hitting set. J. Comput. Syst. Sci. 76(7), 524–531 (2010)
Bang-Jensen, J., Maddaloni, A., Saurabh, S.: Algorithms and kernels for feedback set problems in generalizations of tournaments. Algorithmica 76(2), 320–343 (2016)
Bergenthal, M., et al.: Pace solver description: Grapa-java. In: IPEC 2022. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2022)
Bergougnoux, B., Eiben, E., Ganian, R., Ordyniak, S., Ramanujan, M.: Towards a polynomial kernel for directed feedback vertex set. Algorithmica 83(5), 1201–1221 (2021)
Bessy, S., et al.: Kernels for feedback arc set in tournaments. JCSS 77(6), 1071–1078 (2011)
Bonamy, M., Kowalik, Ł, Nederlof, J., Pilipczuk, M., Socała, A., Wrochna, M.: On directed feedback vertex set parameterized by treewidth. In: Brandstadt, A., Kohler, E., Meer, K. (eds.) WG 2018. LNCS, vol. 11159, pp. 65–78. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00256-5_6
Chen, J., Liu, Y., Lu, S., O’sullivan, B., Razgon, I.: A fixed-parameter algorithm for the directed feedback vertex set problem. In: STOC 2008, pp. 177–186 (2008)
Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: On the hardness of losing width. Theory Comput. Syst. 54(1), 73–82 (2014)
Dell, H., Van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses. JACM 61(4), 1–27 (2014)
Dirks, J., Gerhard, E., Grobler, M., Mouawad, A.E., Siebertz, S.: Data reduction for directed feedback vertex set on graphs without long induced cycles. arXiv preprint arXiv:2308.15900 (2023)
Dom, M., Guo, J., Hüffner, F., Niedermeier, R., Truß, A.: Fixed-parameter tractability results for feedback set problems in tournaments. J. Discrete Algorithms 8(1), 76–86 (2010)
Drange, P.G., et al.: Kernelization and sparseness: the case of dominating set. In: STACS 2016, LIPIcs, vol. 47, pp. 31:1–31:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)
Dreier, J., Mählmann, N., Siebertz, S.: First-order model checking on structurally sparse graph classes. In: STOC 2023, pp. 567–580. ACM (2023)
Eickmeyer, K., et al.: Neighborhood complexity and kernelization for nowhere dense classes of graphs. In: ICALP 2017, LIPIcs, vol. 80, pp. 63:1–63:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)
Erdös, P., Rado, R.: Intersection theorems for systems of sets. J. London Math. Soc. 1(1), 85–90 (1960)
Even, G., Schieber, B., Sudan, M.: Approximating minimum feedback sets and multicuts in directed graphs. Algorithmica 20(2), 151–174 (1998)
Fafianie, S., Kratsch, S.: A shortcut to (sun)flowers: kernels in logarithmic space or linear time. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9235, pp. 299–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48054-0_25
Fellows, M.R., Kratochvíl, J., Middendorf, M., Pfeiffer, F.: The complexity of induced minors and related problems. Algorithmica 13(3), 266–282 (1995)
Fleischer, R., Wu, X., Yuan, L.: Experimental study of FPT algorithms for the directed feedback vertex set problem. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 611–622. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04128-0_55
Fomin, F.V., Le, T., Lokshtanov, D., Saurabh, S., Thomassé, S., Zehavi, M.: Subquadratic kernels for implicit 3-hitting set and 3-set packing problems. TALG 15(1), 1–44 (2019)
Fomin, F.V., Le, T., Lokshtanov, D., Saurabh, S., Thomasse, S., Zehavi, M.: Lossy kernelization for (implicit) hitting set problems. arXiv preprint arXiv:2308.05974 (2023)
Fomin, F.V., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization: Theory of Parameterized Preprocessing. Cambridge University Press, Cambridge (2019)
Grohe, M., Kreutzer, S., Siebertz, S.: Deciding first-order properties of nowhere dense graphs. JACM 64(3), 1–32 (2017)
Großmann, E., Heuer, T., Schulz, C., Strash, D.: The pace 2022 parameterized algorithms and computational experiments challenge: directed feedback vertex set. In: IPEC 2022. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2022)
Guruswami, V., Håstad, J., Manokaran, R., Raghavendra, P., Charikar, M.: Beating the random ordering is hard: Every ordering CSP is approximation resistant. SICOMP 40(3), 878–914 (2011)
Guruswami, V., Lee, E.: Simple proof of hardness of feedback vertex set. Theory Comput. 12(1), 1–11 (2016)
Haas, R., Hoffmann, M.: Chordless paths through three vertices. TCS 351(3), 360–371 (2006)
Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations. The IBM Research Symposia Series, pp. 85–103. Springer, Heidelberg (1972). https://doi.org/10.1007/978-1-4684-2001-2_9
Kreutzer, S., Ordyniak, S.: Digraph decompositions and monotonicity in digraph searching. TCS 412(35), 4688–4703 (2011)
Kreutzer, S., Rabinovich, R., Siebertz, S.: Polynomial kernels and wideness properties of nowhere dense graph classes. ACM Trans. Algorithms 15(2), 24:1–24:19 (2019)
Lokshtanov, D., Misra, P., Ramanujan, M., Saurabh, S., Zehavi, M.: FPT-approximation for FPT problems. In: SODA 2021, pp. 199–218. SIAM (2021)
Lokshtanov, D., Ramanujan, M.S., Saurabh, S.: A linear time parameterized algorithm for directed feedback vertex set. CoRR abs/1609.04347 (2016)
Lokshtanov, D., Ramanujan, M.S., Saurabh, S., Sharma, R., Zehavi, M.: Wannabe bounded treewidth graphs admit a polynomial kernel for DFVS. In: Friggstad, Z., Sack, J.-R., Salavatipour, M.R. (eds.) WADS 2019. LNCS, vol. 11646, pp. 523–537. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24766-9_38
Nešetřil, J., Ossona de Mendez, P.: Grad and classes with bounded expansion i. decompositions. Eur. J. Comb 29(3), 760–776 (2008)
Nešetřil, J., de Mendez, P.O.: On nowhere dense graphs. Eur. J. Comb. 32(4), 600–617 (2011)
Pilipczuk, M., Siebertz, S., Toruńczyk, S.: On the number of types in sparse graphs. In: LICS 2018, pp. 799–808. ACM (2018)
Razgon, I.: Computing minimum directed feedback vertex set in \(o*(1.9977^n)\). In: TCS, pp. 70–81. World Scientific (2007)
Seymour, P.D.: Packing directed circuits fractionally. Combinatorica 15(2), 281–288 (1995)
Svensson, O.: Hardness of vertex deletion and project scheduling. In: Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds.) APPROX/RANDOM -2012. LNCS, vol. 7408, pp. 301–312. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32512-0_26
Van Bevern, R.: Towards optimal and expressive kernelization for d-hitting set. Algorithmica 70(1), 129–147 (2014)
Weihe, K.: Covering trains by stations or the power of data reduction. ALEX, 1–8 (1998)
You, J., Wang, J., Cao, Y.: Approximate association via dissociation. Discret. Appl. Math. 219, 202–209 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Dirks, J., Gerhard, E., Grobler, M., Mouawad, A.E., Siebertz, S. (2024). Data Reduction for Directed Feedback Vertex Set on Graphs Without Long Induced Cycles. In: Fernau, H., Gaspers, S., Klasing, R. (eds) SOFSEM 2024: Theory and Practice of Computer Science. SOFSEM 2024. Lecture Notes in Computer Science, vol 14519. Springer, Cham. https://doi.org/10.1007/978-3-031-52113-3_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-52113-3_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-52112-6
Online ISBN: 978-3-031-52113-3
eBook Packages: Computer ScienceComputer Science (R0)