Skip to main content

Generalized Distance Polymatrix Games

  • Conference paper
  • First Online:
SOFSEM 2024: Theory and Practice of Computer Science (SOFSEM 2024)

Abstract

We consider a generalization of the distance polymatrix coordination games to hypergraphs. The classic polymatrix coordination games and the successive distance polymatrix coordination games are usually modelled by means of undirected graphs, where nodes represent agents, and edges stand for binary games played by the agents at their extremes. The utility of an agent depends at different scales on the outcome of a suitably defined subset of all binary games, plus the preference she has for her action.

We propose the new class of generalized distance polymatrix games, properly generalizing distance polymatrix coordination games, in which each subgame can be played by more than two agents. They can be suitably modelled by means of hypergraphs, where each hyperedge represents a subgame played by its agents. Moreover, as for distance polymatrix coordination games, the overall utility of a player x also depends on the payoffs of the subgames where the involved players are far, at most, a given distance from x. As for the original model, we discount these payoffs proportionally by factors depending on the distance of the related hyperedges.

After formalizing and motivating our model, we first investigate the existence of exact and approximate strong equilibria. Then we study the degradation of the social welfare by resorting to the standard measures of Price of Anarchy and Price of Stability, both for general and bounded-degree graphs.

This work is partially supported by GNCS-INdAM and European Union, PON Ricerca e Innovazione 2014-20 TEBAKA - Fondo Sociale Europeo 2014-20.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A hypergraph \(\mathcal {H}\) has degree bounded by \(\varDelta \) if the degree of every node x of \(\mathcal {H}\) is at most \(\varDelta \).

References

  1. Aloisio, A.: Distance hypergraph polymatrix coordination games. In: Proceedings of the 22nd Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 2679–2681 (2023)

    Google Scholar 

  2. Aloisio, A., Flammini, M., Kodric, B., Vinci, C.: Distance polymatrix coordination games. In: Proceedings of the 30th International Joint Conference on Artificial Intelligence, IJCAI-21, pp. 3–9 (2021)

    Google Scholar 

  3. Aloisio, A., Flammini, M., Vinci, C.: The impact of selfishness in hypergraph hedonic games. In: Proceedings of the 34th Conference on Artificial Intelligence (AAAI), pp. 1766–1773 (2020)

    Google Scholar 

  4. Apt, K.R., de Keijzer, B., Rahn, M., Schäfer, G., Simon, S.: Coordination games on graphs. Int. J. Game Theory 46(3), 851–877 (2017)

    Article  MathSciNet  Google Scholar 

  5. Ashlagi, I., Krysta, P., Tennenholtz, M.: Social context games. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 675–683. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92185-1_73

    Chapter  Google Scholar 

  6. Aziz, H., Brandl, F., Brandt, F., Harrenstein, P., Olsen, M., Peters, D.: Fractional hedonic games. ACM Trans. Econ. Comput. 7(2), 6:1–6:29 (2019)

    Google Scholar 

  7. Aziz, H., Brandt, F., Seedig, H.G.: Optimal partitions in additively separable hedonic games. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI), pp. 43–48 (2011)

    Google Scholar 

  8. Bilò, V., Celi, A., Flammini, M., Gallotti, V.: Social context congestion games. Theor. Comput. Sci. 514, 21–35 (2013)

    Article  MathSciNet  Google Scholar 

  9. Bilò, V., Fanelli, A., Flammini, M., Monaco, G., Moscardelli, L.: Nash stable outcomes in fractional hedonic games: existence, efficiency and computation. J. Artif. Intell. Res. 62, 315–371 (2018)

    Article  MathSciNet  Google Scholar 

  10. Bilò, V., Fanelli, A., Flammini, M., Monaco, G., Moscardelli, L.: Optimality and Nash stability in additive separable generalized group activity selection problems. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI), pp. 102–108 (2019)

    Google Scholar 

  11. Cai, Y., Candogan, O., Daskalakis, C., Papadimitriou, C.H.: Zero-sum polymatrix games: a generalization of minmax. Math. Oper. Res. 41(2), 648–655 (2016)

    Article  MathSciNet  Google Scholar 

  12. Cai, Y., Daskalakis, C.: On minmax theorems for multiplayer games. In: Proceedings of the 22nd Symposium on Discrete Algorithms (SODA), pp. 217–234 (2011)

    Google Scholar 

  13. Carosi, R., Monaco, G., Moscardelli, L.: Local core stability in simple symmetric fractional hedonic games. In: Proceedings of the 18th International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 574–582 (2019)

    Google Scholar 

  14. Darmann, A., Elkind, E., Kurz, S., Lang, J., Schauer, J., Woeginger, G.J.: Group activity selection problem. In: Proceedings of the 8th International Workshop Internet & Network Economics (WINE), vol. 7695, pp. 156–169 (2012)

    Google Scholar 

  15. Darmann, A., Lang, J.: Group activity selection problems. In: Trends in Computational Social Choice, pp. 385–410 (2017)

    Google Scholar 

  16. Deligkas, A., Fearnley, J., Savani, R., Spirakis, P.G.: Computing approximate Nash equilibria in Polymatrix games. Algorithmica 77(2), 487–514 (2017)

    Article  MathSciNet  Google Scholar 

  17. Drèze, J.H., Greenberg, J.: Hedonic coalitions: optimality and stability. Econometrica 48(4), 987–1003 (1980)

    Article  MathSciNet  Google Scholar 

  18. Eaves, B.C.: Polymatrix games with joint constraints. SIAM J. Appl. Math. 24(3), 418–423 (1973)

    Article  MathSciNet  Google Scholar 

  19. Elkind, E., Fanelli, A., Flammini, M.: Price of pareto optimality in hedonic games. Artif. Intell. 288, 103357 (2020)

    Article  MathSciNet  Google Scholar 

  20. Ellis, D., Linial, N.: On regular hypergraphs of high girth. Electron. J. Comb. 21(1), 1 (2014)

    MathSciNet  Google Scholar 

  21. Flammini, M., Kodric, B., Olsen, M., Varricchio, G.: Distance hedonic games. In: Proceedings of the 19th Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 1846–1848 (2020)

    Google Scholar 

  22. Gourvès, L., Monnot, J.: On strong equilibria in the max cut game. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 608–615. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10841-9_62

    Chapter  Google Scholar 

  23. Howson, J.T.: Equilibria of polymatrix games. Manag. Sci. 18(5), 312–318 (1972)

    Article  MathSciNet  Google Scholar 

  24. Howson, J.T., Rosenthal, R.W.: Bayesian equilibria of finite two-person games with incomplete information. Manag. Sci. 21(3), 313–315 (1974)

    Article  MathSciNet  Google Scholar 

  25. Janovskaja, E.: Equilibrium points in polymatrix games. Lith. Math. J. 8(2), 381–384 (1968)

    Article  Google Scholar 

  26. Kearns, M.J., Littman, M.L., Singh, S.P.: Graphical models for game theory. In: Proceedings of the 17th International Conference on Uncertainty in Artificial Intelligence (UAI), pp. 253–260 (2001)

    Google Scholar 

  27. Miller, D.A., Zucker, S.W.: Copositive-plus Lemke algorithm solves polymatrix games. Oper. Res. Lett. 10(5), 285–290 (1991)

    Article  MathSciNet  Google Scholar 

  28. Monaco, G., Moscardelli, L., Velaj, Y.: Stable outcomes in modified fractional hedonic games. Auton. Agents Multi Agent Syst. 34(1), 4 (2020)

    Article  Google Scholar 

  29. Monderer, D., Shapley, L.S.: Potential games. Games Econom. Behav. 14(1), 124–143 (1996)

    Article  MathSciNet  Google Scholar 

  30. Rahn, M., Schäfer, G.: Efficient equilibria in polymatrix coordination games. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9235, pp. 529–541. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48054-0_44

    Chapter  Google Scholar 

  31. Simon, S., Wojtczak, D.: Synchronisation games on hypergraphs. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI), pp. 402–408 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Aloisio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aloisio, A., Flammini, M., Vinci, C. (2024). Generalized Distance Polymatrix Games. In: Fernau, H., Gaspers, S., Klasing, R. (eds) SOFSEM 2024: Theory and Practice of Computer Science. SOFSEM 2024. Lecture Notes in Computer Science, vol 14519. Springer, Cham. https://doi.org/10.1007/978-3-031-52113-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52113-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52112-6

  • Online ISBN: 978-3-031-52113-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics