Skip to main content

Automata Classes Accepting Languages Whose Commutative Closure is Regular

  • Conference paper
  • First Online:
SOFSEM 2024: Theory and Practice of Computer Science (SOFSEM 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14519))

  • 116 Accesses

Abstract

The commutative closure operation, which corresponds to the Parikh image, is a natural operation on formal languages occurring in verification and model-checking. Commutative closures of regular languages correspond to semilinear sets and, by Parikh’s theorem, to the commutative closures of context-free languages. The commutative closure is not regularity-preserving on the class of regular languages, for example already the commutative closure of the simple language \((ab)^*\) is not regular. Here, we show that the commutative closure of a binary regular language accepted by a circular automaton yields a regular language. Then, we deduce a sufficient condition on the cycles in automata for regularity of the commutative closure. This yields this property, for example, for the following classes of automata: automata with threshold one transformation semigroups, automata with simple idempotents and almost-group automata. The fact that the commutative closure on group languages and polynomials of group languages is regularity-preserving is known in the literature. Polynomials of group languages correspond to level one-half of the group hierarchy. We also show that on the next level in this hierarchy, i.e., level one, this property is lost and the commutative closure is no longer regularity-preserving. Lastly, we give a binary circular automaton not contained in the largest proper positive variety \(\mathcal W\) closed under shuffle and commutative closure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A language is cofinite if its complement is finite.

  2. 2.

    We note that this result can be stated a little more general using so-called chains of simple semigroups and well-quasi order arguments due to Kunc [26] but which we leave out due to space.

  3. 3.

    See Sect. 8 for a simpler example due to an anonymous reviewer.

  4. 4.

    We note that it follows easily from results in the literature that languages accepted by binary circular automata are not in the other classes mentioned in this work closed for commutation.

  5. 5.

    For the definition of monoids and semigroups and their relation to automata and formal language theory we refer to the literature, for example [32].

  6. 6.

    An element \(y \in M\) is idempotent if \(yy = y\).

References

  1. Arfi, M.: Opérations polynomiales et hiérarchies de concaténation. Theoret. Comput. Sci. 91(1), 71–84 (1991). https://doi.org/10.1016/0304-3975(91)90268-7

    Article  MathSciNet  Google Scholar 

  2. Beaudry, M.: Membership testing in threshold one transformation monoids. Inf. Comput. 113(1), 1–25 (1994). https://doi.org/10.1006/inco.1994.1062

    Article  MathSciNet  Google Scholar 

  3. Berlinkov, M.V., Nicaud, C.: Synchronizing almost-group automata. Int. J. Found. Comput. Sci. 31(8), 1091–1112 (2020). https://doi.org/10.1142/S0129054120420058

    Article  MathSciNet  Google Scholar 

  4. Birkmann, F., Milius, S., Urbat, H.: On language varieties without boolean operations. In: Leporati, A., Martín-Vide, C., Shapira, D., Zandron, C. (eds.) LATA 2021. LNCS, vol. 12638, pp. 3–15. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68195-1_1

    Chapter  Google Scholar 

  5. Bouajjani, A., Muscholl, A., Touili, T.: Permutation rewriting and algorithmic verification. Inf. Comput. 205(2), 199–224 (2007). https://doi.org/10.1016/j.ic.2005.11.007

    Article  MathSciNet  Google Scholar 

  6. Cameron, P.J.: Permutation Groups. London Mathematical Society Student Texts. Cambridge University Press, Cambridge (1999). https://doi.org/10.1017/CBO9780511623677

  7. Cécé, G., Héam, P., Mainier, Y.: Clôtures transitives de semi-commutations et model-checking régulier. Technique et Science Informatiques 27(1–2), 7–28 (2008). https://doi.org/10.3166/tsi.27.7-28

    Article  Google Scholar 

  8. Cécé, G., Héam, P., Mainier, Y.: Efficiency of automata in semi-commutation verification techniques. RAIRO Theor. Inform. Appl. 42(2), 197–215 (2008). https://doi.org/10.1051/ITA:2007029

    Article  MathSciNet  Google Scholar 

  9. Clerbout, M., Latteux, M.: Semi-commutations. Inf. Comput. 73(1), 59–74 (1987). https://doi.org/10.1016/0890-5401(87)90040-X

    Article  Google Scholar 

  10. Cohen, R.S., Brzozowski, J.A.: Dot-depth of star-free events. J. Comput. Syst. Sci. 5(1), 1–16 (1971). https://doi.org/10.1016/S0022-0000(71)80003-X

    Article  MathSciNet  Google Scholar 

  11. Cori, R., Perrin, D.: Automates et commutations partielles. RAIRO Theor. Inform. Appl. 19(1), 21–32 (1985). https://doi.org/10.1051/ita/1985190100211

    Article  MathSciNet  Google Scholar 

  12. Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific, Singapore (1995). https://doi.org/10.1142/2563

  13. Ginsburg, S., Spanier, E.H.: Bounded regular sets. Proc. Am. Math. Soc. 17(5), 1043–1049 (1966). https://doi.org/10.2307/2036087

    Article  MathSciNet  Google Scholar 

  14. Ginsburg, S., Spanier, E.H.: Semigroups, Presburger formulas, and languages. Pac. J. Math. 16(2), 285–296 (1966). https://doi.org/10.2140/pjm.1966.16.285

    Article  MathSciNet  Google Scholar 

  15. Ginsburg, S., Spanier, E.H.: AFL with the semilinear property. J. Comput. Syst. Sci. 5(4), 365–396 (1971). https://doi.org/10.1016/S0022-0000(71)80024-7

    Article  MathSciNet  Google Scholar 

  16. Gohon, P.: An algorithm to decide whether a rational subset of \({N}^k\) is recognizable. Theoret. Comput. Sci. 41, 51–59 (1985). https://doi.org/10.1016/0304-3975(85)90059-3

    Article  MathSciNet  Google Scholar 

  17. Gómez, A.C., Guaiana, G., Pin, J.É.: Regular languages and partial commutations. Inf. Comput. 230, 76–96 (2013). https://doi.org/10.1016/j.ic.2013.07.003

    Article  MathSciNet  Google Scholar 

  18. Gómez, A.C., Pin, J.: Shuffle on positive varieties of languages. Theoret. Comput. Sci. 312(2–3), 433–461 (2004). https://doi.org/10.1016/j.tcs.2003.10.034

    Article  MathSciNet  Google Scholar 

  19. Guaiana, G., Restivo, A., Salemi, S.: On the trace product and some families of languages closed under partial commutations. J. Autom. Lang. Comb. 9(1), 61–79 (2004). https://doi.org/10.25596/jalc-2004-061

    Article  MathSciNet  Google Scholar 

  20. Hoffmann, S.: The commutative closure of shuffle languages over group languages is regular. In: Maneth, S. (ed.) CIAA 2021. LNCS, vol. 12803, pp. 53–64. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79121-6_5

    Chapter  Google Scholar 

  21. Hoffmann, S.: Regularity conditions for iterated shuffle on commutative regular languages. Int. J. Found. Comput. Sci. 34(08), 923–957 (2023). https://doi.org/10.1142/S0129054123430037

    Article  MathSciNet  Google Scholar 

  22. Hoffmann, S.: State complexity bounds for the commutative closure of group languages. J. Autom. Lang. Comb. 28(1–3), 27–57 (2023). https://doi.org/10.25596/JALC-2023-027

    Article  MathSciNet  Google Scholar 

  23. Hoffmann, S.: State complexity of permutation and the language inclusion problem up to parikh equivalence on alphabetical pattern constraints and partially ordered nfas. Int. J. Found. Comput. Sci. 34(08), 959–986 (2023). https://doi.org/10.1142/S0129054123430025

    Article  MathSciNet  Google Scholar 

  24. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision problems. J. ACM 25(1), 116–133 (1978). https://doi.org/10.1145/322047.322058

    Article  MathSciNet  Google Scholar 

  25. Klaedtke, F., Rueß, H.: Monadic second-order logics with cardinalities. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 681–696. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45061-0_54

    Chapter  Google Scholar 

  26. Kunc, M.: Regular solutions of language inequalities and well quasi-orders. Theoret. Comput. Sci. 348(2–3), 277–293 (2005). https://doi.org/10.1016/j.tcs.2005.09.018

    Article  MathSciNet  Google Scholar 

  27. Latteux, M.: Cônes rationnels commutatifs. J. Comput. Syst. Sci. 18(3), 307–333 (1979). https://doi.org/10.1016/0022-0000(79)90039-4

    Article  Google Scholar 

  28. Commutative closures of regular semigroups of languages: L’vov, M. Cybern. Syst. Anal. (Cybern.) 9, 247–252 (1973). https://doi.org/10.1007/BF01069078. translated (original in Russian) from Kibernetika (Kiev), No. 2, pp. 54–58, March-April, 1973

    Article  Google Scholar 

  29. Muscholl, A., Petersen, H.: A note on the commutative closure of star-free languages. Inf. Process. Lett. 57(2), 71–74 (1996). https://doi.org/10.1016/0020-0190(95)00187-5

    Article  MathSciNet  Google Scholar 

  30. Parikh, R.: On context-free languages. J. ACM 13(4), 570–581 (1966). https://doi.org/10.1145/321356.321364

    Article  Google Scholar 

  31. Pin, J.É.: PG = BG, a success story. In: Fountain, J. (ed.) NATO Advanced Study Institute, Semigroups, Formal Languages and Groups, pp. 33–47. Kluwer Academic Publishers (1995)

    Google Scholar 

  32. Pin, J.-E.: Syntactic semigroups. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 679–746. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-59136-5_10

    Chapter  Google Scholar 

  33. Place, T., Zeitoun, M.: Generic results for concatenation hierarchies. Theory Comput. Syst. 63(4), 849–901 (2019). https://doi.org/10.1007/s00224-018-9867-0

    Article  MathSciNet  Google Scholar 

  34. Polák, L.: A classification of rational languages by semilattice-ordered monoids. Archivum Mathematicum 040(4), 395–406 (2004)

    MathSciNet  Google Scholar 

  35. Rabin, M.O., Scott, D.S.: Finite automata and their decision problems. IBM J. Res. Dev. 3(2), 114–125 (1959). https://doi.org/10.1147/rd.32.0114

    Article  MathSciNet  Google Scholar 

  36. Redko, V.N.: On the commutative closure of events. Doklady Akademija Nauk Ukrainskoj SSR (Kiev), also Dopovidi Akademij Nauk Ukrajnskoj RSR (= Reports of the Academy of Sciences of the Ukrainian SSR), pp. 1156–1159 (1963). (in Russian)

    Google Scholar 

  37. Rigo, M.: The commutative closure of a binary slip-language is context-free: a new proof. Discret. Appl. Math. 131(3), 665–672 (2003). https://doi.org/10.1016/S0166-218X(03)00335-4

    Article  MathSciNet  Google Scholar 

  38. Rystsov, I.K.: Estimation of the length of reset words for automata with simple idempotents. Cybern. Syst. Anal. 36(3), 339–344 (2000). https://doi.org/10.1007/BF02732984

    Article  MathSciNet  Google Scholar 

  39. Sakarovitch, J.: The “last’’ decision problem for rational trace languages. In: Simon, I. (ed.) LATIN 1992. LNCS, vol. 583, pp. 460–473. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0023848

    Chapter  Google Scholar 

  40. Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 214–222. Springer, Heidelberg (1975). https://doi.org/10.1007/3-540-07407-4_23

    Chapter  Google Scholar 

  41. Straubing, H.: A generalization of the Schützenberger product of finite monoids. Theoret. Comput. Sci. 13, 137–150 (1981). https://doi.org/10.1016/0304-3975(81)90036-0

    Article  MathSciNet  Google Scholar 

  42. Thérien, D.: Classification of finite monoids: the language approach. Theoret. Comput. Sci. 14, 195–208 (1981). https://doi.org/10.1016/0304-3975(81)90057-8

    Article  MathSciNet  Google Scholar 

  43. Volkov, M.V., Kari, J.: Černý’s conjecture and the road colouring problem. In: Pin, J.É. (ed.) Handbook of Automata Theory, Volume I, pp. 525–565. European Mathematical Society Publishing House (2021). https://doi.org/10.4171/automata-1/15

Download references

Acknowledgement

I thank the anonymous reviewers for careful reading and spotting typos. I also thank one reviewer for mentioning the simpler argument for the result from Sect. 6 (see the conclusion, Sect. 8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Hoffmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hoffmann, S. (2024). Automata Classes Accepting Languages Whose Commutative Closure is Regular. In: Fernau, H., Gaspers, S., Klasing, R. (eds) SOFSEM 2024: Theory and Practice of Computer Science. SOFSEM 2024. Lecture Notes in Computer Science, vol 14519. Springer, Cham. https://doi.org/10.1007/978-3-031-52113-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52113-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52112-6

  • Online ISBN: 978-3-031-52113-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics