Skip to main content

Query Learning of Minimal Deterministic Symbolic Finite Automata Separating Regular Languages

  • Conference paper
  • First Online:
SOFSEM 2024: Theory and Practice of Computer Science (SOFSEM 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14519))

  • 133 Accesses

Abstract

We propose a query learning algorithm for constructing a minimal DSFA M that separates given two regular languages \(L_+\) and \(L_-\), i.e., \(L_+ \subseteq \mathcal {L}(M)\) and \(L_- \cap \mathcal {L}(M) = \emptyset \). Our algorithm extends the algorithm for learning separating DFAs by Chen et al. (TACAS 2009) embedding the algorithm for learning DSFAs by Argyros and D’Antoni (CAV 2018). Since the problem of finding a minimal separating automaton is NP-hard, we also propose two heuristic methods to learn a separating DSFA which is not necessarily minimal. One runs faster and the other outputs smaller separating DSFAs. So, one of those can be chosen depending on the application requirement.

D. Hendrian—He is currently working in Tokyo Medical and Dental University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Argyros and D’Antoni’s theorem claims a less tight bound \(\mathcal {O}(|Q|^2 |\varDelta | \mathcal {M}^\varLambda (k) + |Q|^2 \log m |\varDelta | \mathcal {E}^\varLambda (k))\) but they proved the bound presented here.

  2. 2.

    http://minisat.se.

  3. 3.

    https://github.com/lorisdanto/symbolicautomata.

References

  1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)

    Article  MathSciNet  Google Scholar 

  2. Argyros, G., D’Antoni, L.: The learnability of symbolic automata. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 427–445. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3_23

    Chapter  Google Scholar 

  3. Argyros, G., Stais, I., Kiayias, A., Keromytis, A.D.: Back in black: towards formal, black box analysis of sanitizers and filters. In: IEEE Symposium on Security and Privacy, pp. 91–109 (2016)

    Google Scholar 

  4. Chen, Y.-F., Farzan, A., Clarke, E.M., Tsay, Y.-K., Wang, B.-Y.: Learning minimal separating DFA’s for compositional verification. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 31–45. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00768-2_3

    Chapter  Google Scholar 

  5. Drews, S., D’Antoni, L.: Learning symbolic automata. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 173–189. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5_10

    Chapter  Google Scholar 

  6. Gold, E.M.: Complexity of automaton identification from given data. Inf. Control 37(3), 302–320 (1978)

    Article  MathSciNet  Google Scholar 

  7. de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  8. Isberner, M.: Foundations of active automata learning: an algorithmic perspective. Ph.D. thesis, Technical University of Dortmund (2015)

    Google Scholar 

  9. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free approach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-3_26

    Chapter  Google Scholar 

  10. Leucker, M., Neider, D.: Learning minimal deterministic automata from inexperienced teachers. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol. 7609, pp. 524–538. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34026-0_39

    Chapter  Google Scholar 

  11. Maler, O., Mens, I.-E.: A generic algorithm for learning symbolic automata from membership queries. In: Aceto, L., Bacci, G., Bacci, G., Ingólfsdóttir, A., Legay, A., Mardare, R. (eds.) Models, Algorithms, Logics and Tools. LNCS, vol. 10460, pp. 146–169. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63121-9_8

    Chapter  Google Scholar 

  12. Moeller, M., Wiener, T., Solko-Breslin, A., Koch, C., Foster, N., Silva, A.: Automata learning with an incomplete teacher (artifact). Dagstuhl Artifacts Ser. 9(2), 21:1–21:3 (2023)

    Google Scholar 

  13. Moon, J., Moser, L.: On cliques in graphs. Israel J. Math. 3, 23–28 (1965)

    Article  MathSciNet  Google Scholar 

  14. Neider, D.: Computing minimal separating DFAs and regular invariants using SAT and SMT solvers. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, pp. 354–369. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33386-6_28

    Chapter  Google Scholar 

  15. Paull, M.C., Unger, S.H.: Minimizing the number of states in incompletely specified sequential switching functions. IRE Trans. Electron. Comput. EC–8(3), 356–367 (1959)

    Article  Google Scholar 

Download references

Acknowledgment

The authors are grateful to the anonymous reviewers for their helpful comments. This work is supported in part by JSPS KAKENHI Grant Numbers JP18K11150 (RY), JP20H05703 (RY), and JP21K11745 (AS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshito Kawasaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kawasaki, Y., Hendrian, D., Yoshinaka, R., Shinohara, A. (2024). Query Learning of Minimal Deterministic Symbolic Finite Automata Separating Regular Languages. In: Fernau, H., Gaspers, S., Klasing, R. (eds) SOFSEM 2024: Theory and Practice of Computer Science. SOFSEM 2024. Lecture Notes in Computer Science, vol 14519. Springer, Cham. https://doi.org/10.1007/978-3-031-52113-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52113-3_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52112-6

  • Online ISBN: 978-3-031-52113-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics