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Abstract
In this study, we investigate the computational complexity of some variants of generalized puzzles.
We are provided with two sets S1 and S2 of polyominoes. The first puzzle asks us to form the same
shape using polyominoes in S1 and S2. We demonstrate that this is polynomial-time solvable if
S1 and S2 have constant numbers of polyominoes, and it is strongly NP-complete in general. The
second puzzle allows us to make copies of the pieces in S1 and S2. That is, a polyomino in S1 can
be used multiple times to form a shape. This is a generalized version of the classical puzzle known
as the common multiple shape puzzle. For two polyominoes P and Q, the common multiple shape
is a shape that can be formed by many copies of P and many copies of Q. We show that the second
puzzle is undecidable in general. The undecidability is demonstrated by a reduction from a new
type of undecidable puzzle based on tiling. Nevertheless, certain concrete instances of the common
multiple shape can be solved in a practical time. We present a method for determining the common
multiple shape for provided tuples of polyominoes and outline concrete results, which improve on
the previously known results in puzzle society.
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1 Introduction

Research on the computational complexity of puzzles and games has become increasingly
important in theoretical computer science (see [12] for a comprehensive survey). Since the
1990s, numerous puzzles have been demonstrated to be NP-complete in general. These
results provide a certain amount of some common sense regarding the NP class. However,
it has not been possible to capture certain puzzles, among which the sliding block puzzle is
representative. This has remained an open problem since Martin Gardner pointed out in the
1960s that a certain theorem is required to understand such puzzles. However, after 40 years,
Hearn and Demaine proposed a framework known as constraint logic, and demonstrated
that these puzzles are PSPACE-complete [8, 7]. Combinatorial reconfiguration problems
have been investigated towards an understanding of the PSPACE class [9].

With the developments in theoretical computer science in the past decade, new series of
puzzles have been developed in puzzle society. In comparison to classical packing puzzles,
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one major property of these puzzles is that the goal is not explicitly stated. The first example
is the symmetric shape puzzle. This puzzle asks us to form a symmetric shape using a given
set of pieces. It is extremely challenging to solve such a puzzle because we cannot be sure
whether or not we are approaching the goal. This property makes the puzzle very difficult,
and in fact, only a few pieces are sufficient to cause this difficulty [4]. The second example is
the anti-slide puzzle. This puzzle asks us to interlock a given set of pieces. A typical instance
asks us to pack the given pieces into a frame so that any piece cannot be slide in the frame.
This puzzle is also difficult because the goal is not explicitly stated. The computational
complexity of this puzzle was recently investigated by [10].

Figure 1 Shape Logic (commercial product by ThinkFun)

In this study, we focus on such a puzzle that is known as the common shape puzzle.
Many instances of this puzzle are available in puzzle society, and a commercial product
named “Shape Logic” exists. (The authors confirmed that this puzzle was named “Top
This!” in 2008 (Figure 1), “ShapeOmetry” in 2012, and “Shape Logic” more recently by the
same puzzle maker. The puzzle “Top This!” won three awards in 2008.2 However, in this
paper, we use the most recent name.) In the shape logic puzzle, we are provided with two
sets S1 and S2 of polygons. We must find a polygon X that can be formed by the pieces
in S1 and S2, respectively, as in the classic silhouette puzzle Tangram. The main difference
between the Tangram and the shape logic puzzle is that the target shape X is not provided,
which drastically increases the difficulty of the puzzles.

Hereafter, we suppose that max{ |S1| / |S2| , |S2| / |S1| } is bounded above by a constant.
(We note that if S1 contains only one piece, the target shape X is fixed to it. Therefore, it
is equivalent to the classic puzzle Tangram for S2, and it is NP-complete even if all pieces
in S1 and S2 are rectangles [3].)

We first demonstrate that it is polynomial-time solvable if |S1| + |S2| is a constant.
Subsequently, we show that the shape logic puzzle is strongly NP-complete even if all the

2 https://www.thinkfun.com/about-us/awards/
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pieces in S1 and S2 are small rectangles. We state that a rectangle in S1 ∪ S2 is small if it
has a polynomial size of |S1| + |S2| .

Figure 2 Copies of a pentomino and copies of a tetromino share a large common shape

Next, we focus on a similar puzzle named the common multiple shape puzzle, which has
been investigated in puzzle society for a long time under a few different names such as
“polypolyomino”3 and “polyform compatibility”4. We propose the term “the (least) com-
mon multiple shape” based on the term “the least common multiple,” as the corresponding
Japanese name is used in Japanese puzzle society.5 The representative instance of this puzzle
is as follows: We are provided with two polygons P and Q. The puzzle asks us to find the
(smallest) shape X that can be tiled by P , and also tiled by Q. That is, we can use any
number of copies of P and Q, and find the common shape X that can be filled by only
copies of P , as well as only copies of Q. The goal of this puzzle is to determine the minimum
shape, however, it is known that some pairs result in a huge solution (e.g., Figure 2), and
at times, it cannot be guaranteed that this is the minimum shape for such a huge solution.
(The problem in Figure 2 of finding a small common multiple shape of the T-pentomino
and O-tetromino was first proposed by Robert Wainright as a problem at the conference of
games and puzzles competitions on computers6 in 2005 and 2011. A solution with an area
of 600 was found in 2011, and it was improved to 340 in 2011.7 In fact, it remains open
whether or not this shape with an area of 340 in Figure 2 is the smallest.)

We naturally consider the (least) common multiple shape variant of the shape logic
puzzle. That is, for given sets S1 and S2 of polygons, the puzzle asks us to find a small
common shape X that can be filled by copies of pieces in S1 (and S2, respectively). We show
that this puzzle is undecidable even if each set of S1 and S2 contains small polyominoes. As
a corollary, we also demonstrate that the following problem is undecidable: For a given set
S of small polyominoes, determine whether a rectangle can be formed using copies of the
pieces in S.

In this study, we also present a formulation of these puzzles and verify the feasibility

3 https://www.iread.it/Poly/
4 https://sicherman.net/polycur.html
5 In Japan, we use (least common multiple shape) following (least common
multiple number).

6 http://hp.vector.co.jp/authors/VA003988/gpcc/gpcc.htm
7 http://deepgreen.game.coocan.jp/MCFG/MCFG_{}index.htm



4 On the Computational Complexity of Generalized Common Shape Puzzles

with a computer. We recently discovered that such puzzles can be solved by SAT-based
solvers with sophisticated modeling far more efficiently than when using other methods [1].
By determining an efficient formulation of this puzzle and using a SAT-based solver, we also
improve several known instances of the common multiple shapes that have been investigated
in puzzle society.

2 Preliminaries

A polyomino is a polygon that can be obtained by joining one or more unit squares edge
to edge [6]. In this study, we only consider simple polyominoes (without holes) as polygons.
(We note that even if all pieces are simple, the solution may have holes, as indicated in
Figure 2.) If a polyomino P is formed by k unit squares, we refer to P as a k-omino. For a
specific k, we also refer to it as a monomino, domino, tromino, tetromino, pentomino, and
hexomino for k = 1, 2, 3, 4, 5, 6, respectively.

A set S1 of polyominoes is said to be a set of small polyominoes when the maximum
polyomino in S1 is a k-omino for k = O( |S1| c) for a positive constant c. In this case, we
assume that the input size of the problem is bounded above by O(p(n)) for a polynomial
function p, where n = |S1| + |S2| .

In this study, we consider two problems on polyominoes. The first problem is the shape
logic puzzle. Given two sets of S1 and S2 of small polyominoes, the puzzle asks us to form
a common polyomino X using all pieces in S1 and all pieces in S2, respectively. The goal
shape X is not provided. Clearly, the shape logic puzzle is in NP when all pieces are small
as we can guess X and verify the feasibility of the given packing of S1 and S2 on X in
polynomial time.

The second problem is the common multiple shape puzzle. Given two finite sets S1 and
S2 of polyominoes, the puzzle asks us to form a common polyomino X with a positive area
using copies of the pieces in S1 and copies of the pieces in S2, respectively. This puzzle
generalizes both of the shape logic puzzle and the puzzle known as the polypolyomino (also
referred to as polyform compatibility). The latter puzzle is the case in which |S1| = |S2| = 1.
It can be extended from two sets to three or more sets naturally. (See Section 5 in this case.)

For a finite set S of polyominoes, we define a set Ŝ of polyominoes P such that P can
be formed by copies of the pieces in S. Clearly, Ŝ is infinite and countable. That is, the
common multiple shape puzzle asks whether or not Ŝ1∩ Ŝ2 6= ∅. When Ŝ1∩ Ŝ2 6= ∅, we refer
to an element in Ŝ1 ∩ Ŝ2 as a common multiple shape. Among the common multiple shapes,
the smallest one is the least common multiple shape.

3 Complexity of Shape Logic Puzzle

In this section, we focus on the generalized shape logic puzzle. That is, given two sets S1
and S2 of polyominoes, we need to decide if all pieces in S1 (and in S2) can form a common
polyomino X.

I Observation 1. When |S1| + |S2| is a constant k, the generalized shape logic puzzle can
be solved in polynomial time of n, where n is the total number of vertices in S1 ∪ S2.

Proof. (Outline.) We solve the problem by brute force using the same technique as in [4,
Section 3]. In [4, Section 3], they presented a method for solving the symmetric assembly
puzzle, which asks us to form a symmetric shape by using the pieces in a set of (general)
simple polygons in polynomial time.
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The generalized shape logic puzzle can be reduced to the symmetric shape puzzle in
polynomial time as follows: Suppose that the generalized shape logic puzzle has a solution
and the pieces in S1 forms a polygon P , which can also be formed by the pieces in S2. Then,
without loss of generality, P can be placed so that its rightmost vertex v is on ∂P ; that
is, any point in P is not right of v. At this point, we obtain a symmetric shape by joining
P and its mirror image P R at vertex v with its mirror image on ∂P R. That is, when the
shape logic puzzle with S1 and S2 has a solution, the symmetric shape puzzle also has a
solution for S1 ∪ S2 such that the left half of the symmetric shape consists of the pieces
in S1 and the right half of the symmetric shape consists of the pieces in S2. The proof in
[4, Section 3] is based on brute force. Therefore, we can restrict our search to a symmetric
shape that also provides a solution for the shape logic puzzle in S1 ∪ S2. As the original
brute force algorithm for the symmetric shape puzzle runs in a polynomial time of n, so
does our algorithm. J J

I Theorem 2. The shape logic puzzle is strongly NP-complete even if all pieces in S1 and
S2 are small rectangles.

Proof. According to the definition of a small polyomino, the problem is in NP. Thus, we
demonstrate the NP-hardness using a reduction from the 3-partition problem. In the 3-
partition problem, we are provided with a multiset of 3m positive integers A = {a1, a2, . . . , a3m},
where the ais are bounded above by a polynomial of m. The goal is to partition the multiset
A into m triples such that every triple has the same sum B = (

∑3m
i=1 ai)/m. It is known that

the 3-partition problem is strongly NP-complete even if every ai satisfies B/4 < ai < B/2
[5, SP16]. Without loss of generality, we assume that ai > 3 for each i and B = 3mB′

for a positive integer B′. Then, the set S1 consists of 3m rectangles of size 1 × (ai + 3m2)
for each i = 1, 2, . . . , 3m. Furthermore, S2 consists of 3m congruent rectangles of size
m× (B/(3m) + 3m). The construction can be completed in a polynomial time of m.

Subsequently, we observe that 3m < B/(3m) + 3m < B/4 + 3m2 < ai + 3m2 for each
i, as 3m pieces exist in S1, ai > 3, and ai > B/4. That is, (1) B/(3m) + 3m is larger
than 3m, which is the number of long and slender rectangles in S1, and (2) each ai + 3m2

cannot fit into any rectangle that is formed by the pieces in S2 except if a rectangle with
a width of m is created. Therefore, the only means of forming the same shape using the
pieces in S1 and the pieces in S2 is to form a rectangle with a size of m× (B + 9m2) using
the pieces in S2 and to pack long rectangles with a size of 1 × (ai + 3m2) into this frame.
The arrangement of pieces in S1 directly provides the solution to the original instance of the
3-partition problem. J J

4 Undecidability of Common Multiple Shape Puzzle

In this section, we demonstrate that the common multiple shape puzzle is undecidable.

4.1 Undecidability of a generalized jigsaw puzzle
We first consider a generalized jigsaw puzzle. We borrow several notions from [2]. Each
piece is a square with four edges and has its own color. We denote the set of colors as
C = {0, 1, 2, . . . , c, 1̄, 2̄, . . . , c̄}. In our jigsaw puzzle, we tile the pieces into a rectangular
frame so that each edge is shared by two adjacent pieces with colors i and ī, except for the
boundary of the frame. A special color 0 exists, which should match to the frame. That is,
when we tile the pieces, the outer boundary has the color 0, and no inside edge has the color
0.
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In our jigsaw puzzle, we are allowed to use copies of a piece in S multiple times, which is
the significant difference between our puzzle and that in [2]. Therefore, for a given finite set
S, we have infinitely countable means of tiling the pieces. Subsequently, the jigsaw puzzle
problem is defined as follows:

Input: A set S of unit square pieces such that each piece has four colors in C on its four
edges.

Output: Decide if there is a polyomino region R such that R can be tiled by copies of pieces
in S in which each inner edge is shared by two adjacent pieces of colors i and ī (with
i > 0), and each edge on the boundary ∂R has the color 0.

We first present the following lemma.

I Lemma 3. There exists a finite set S of jigsaw puzzle pieces such that the area R is tiled
by copies of the pieces in S with the boundary color 0 along ∂R if and only if R is a rectangle
with a size of at least 3× 3.

0
0
V'
H'

0
H
v
H

0
H
V
0

0
V

v V
0

0
0
H

0
H
v
H

0
H 0

V

Vv

V V

h

h h h

0
H'
v
H

0
V

V'
h

Figure 3 Jigsaw puzzle in a rectangle

Proof. We consider the set of 11 jigsaw puzzle pieces depicted in Figure 3. For ease of
reference, we use some letters such as H, V , etc. instead of the numbers 1, 2, etc. in the
figure. As every piece contains H, H̄, H ′, H̄ ′, h, or h̄, without loss of generality, we can
assume that one piece is placed so that its H̄, H̄ ′, or h̄ is on its left, and all the pieces are
then aligned in the same direction, as indicated in the figure. The boundary of the jigsaw
puzzle is labeled by 0. We observe that we cannot form a rectangle with a size of 2 × n

(and n × 2) for any n because V ′ and V̄ (and H ′ and H̄) do not match. Furthermore, we
observe that an edge is colored by h or v if and only if it is not incident to a vertex on the
boundary. Therefore, we have no other means of forming a rectangle by filling the copies
of the boundary pieces with the color 0. In particular, we cannot create a corner with the
angle 270◦; to achieve this, we must place one “corner boundary” piece inside, which results
in the color 0 being inside the shape, and this is not permitted. J J

We show that our jigsaw puzzle problem is undecidable.

I Lemma 4. There exists a finite set S of pieces of the jigsaw puzzle such that the jigsaw
puzzle is undecidable.

Proof. (Outline.) We present a polynomial-time reduction from the following Post corres-
pondence problem:
Input: A sequence of pairs of strings s1 = (t1; b1), s2 = (t2; b2), . . . , sn = (tn, bn).
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Output: For a pair si = (ti; bi) of strings, we define T (si) = ti,B(si) = bi. We decide if there
exists a sequence of pairs si1 , si2 , si3 , . . . , sik

of strings such that T (si1)T (si2)T (si3) · · ·T (sik
) =

B(si1)B(si2)B(si3) · · ·B(sik
).

Let Σ be an alphabet, namely the set of letters that is used in the sequence. We note that
we can use each pair si can be used any number of times. It is well known that the Post
correspondence problem is undecidable even if |Σ| is a constant [11].
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Figure 4 A reduction from the Post correspondence problem to the jigsaw puzzle problem

We demonstrate the reduction by using a concrete example Σ = {a, b, c}, s1 = (b; ca), s2 =
(a; ab), s3 = (ca; a), s4 = (abc; c) (Figure 4). We prepare one piece, one piece, two pieces, and
three pieces of jigsaw puzzle for each string t1 = b, t2 = a, t3 = ca, and t4 = abc, respectively.
We set each string to be uniquely constructible: two pieces for t3 = ca have their own color
(distinct from any other color) between them, and three pieces for t4 = abc have their own
two colors between a and b, and b and c (these are blank in Figure 4). The top color is 0,
the left color is H̄, and the right color is H for each piece. (As in the proof of Lemma 3, we
regard certain letters as numbers greater than n.) Hereafter, we consider these strings as
rectangular pieces that are represented by sizes of 1× 1, 1× 1, 2× 1, and 3× 1, respectively.
The leftmost bottom color of the rectangular piece ti is the color i, which is referred to as
the ID of this rectangular piece. The color of the other edge corresponds to the letter in the
string. That is, the second and the third pieces of the rectangle representing t4 = abc have
the colors b and the color c, respectively. (We regard these letters as unique numbers in the
color set C. As the size of the alphabet Σ is a constant, regarding these letters as numbers
has no influence on our arguments.)

Subsequently, we prepare two, two, one, and one pieces for the strings b1 = ca, b2 = ab,
b3 = a, and b4 = c, respectively. As with the strings ti, b1, b2, b3, b4 each corresponds to a
rectangular piece with a size of 2× 1, 2× 1, 1× 1, and 1× 1, respectively. The bottom color
is 0, the left color is H̄, and the right color is H for these rectangular pieces. The top colors
of the rectangular piece are represented by the letters, except for the leftmost edge, which
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has the color ID ī′′ for the string bi.
Next, we prepare to join two pieces with the IDs i and i′′. Hereafter, we use (cu, cb, cl, cr)

to denote the top color cu, bottom color cb, left color cl, and right color cr of a piece.
Furthermore, we assume that the top letter of ti is xi and the top letter of bi is yi. We first
prepare a piece with colors (̄i, i, h̄, h), which is a wire of the ID in the vertical direction. We
also prepare a piece with colors (̄i, xi, h̄, i′), which turns the ID to the right, and a piece
with colors (̄i, xi, ī′, h), which turns the ID to the left. The ID is turned to the right or left
using one of these pieces and runs horizontally. The prime symbol ′ means that the ID turns
once. Thereafter, we prepare two pieces with the colors (ȳi, i′′, h̄, i′) and (ȳi, i′′, ī′, h) to turn
the ID downwards. In this case, the symbol ′′ means that the ID turns twice. Furthermore,
we prepare a piece with the color (j̄, j, ī′, i′) for each letter j ∈ Σ to propagate the ID in
the horizontal direction. We also add a piece with the color (ī′′, i′′, h̄, h) to pass the ID
downwards after turning twice. In a special case, an ID can directly move from top to
bottom without turning. We prepare a piece with the color (̄i, i′′, h̄, h) to deal with this case.
Thus, we prepare a total of eight pieces for the IDs i and i′′.

Subsequently, we prepare pieces to form the left and right sides of the rectangular
frame. We prepare six pieces with the colors (0, V, 0, H), (0, V, H̄, 0), (V̄ , V, 0, h), (V̄ , V, h̄, 0),
(V̄ , 0, 0, H), and (V̄ , 0, H̄, 0). Finally, we prepare pieces (j̄, j, h̄, h) for each j ∈ Σ to fill the
holes in the frame.

We prepare
∑n

i=1( |ti| + |bi| ) + 8n + 6 + |Σ| pieces in total. Therefore, the jigsaw
puzzle can be constructed in polynomial time for the size of a given instance of the Post
correspondence problem.

We demonstrate that the instance s1 = (t1; b1), s2 = (t2; b2), . . . , sn = (tn, bn) of the Post
correspondence problem has a solution if and only if the jigsaw puzzle has a solution such
that a rectangular area R is filled with copies of the pieces with the color 0 only on ∂R.

We first assume that the sequence si1 , . . . , sik
is a solution, from which we construct a

rectangular shape using the set of pieces of the jigsaw puzzle. We use s1 = (b; ca), s2 =
(a; ab), s3 = (ca; a), s4 = (abc; c) as an example (Figure 5). Intuitively, we verify that two
corresponding IDs are joined by a zig-zag path with two (or zero) turns, these zig-zag paths
do not cross one another, and the corresponding letters are joined by vertical matching
pieces.

We first align the rectangular pieces ti1 , ti2 , . . . , tik
on the top row and bi1 , bi2 , . . . , bik

on
the bottom row following the solution si1 , . . . , sik

of the Post correspondence problem. (As
a reminder, each string ti (and si) produces unique rectangular pieces.) Thus, we obtain 0s
on the top and bottom boundaries, and we can join all rectangular pieces by matching h and
h̄. Subsequently, we join all corresponding pairs of IDs using the prepared pieces. When the
gap between the top and bottom rows is sufficiently large, each joining path for each ID i

can be created in one of the following manners:
1. The pair of the corresponding IDs i and i′′ in the same column is directly joined vertically,
2. When the ID i′′ of bi is left of the ID i of ti, the ID i first moves down vertically, turns

left once, moves horizontally, turns right once, and moves downwards to the ID i′′, and
3. When the ID i′′ of bi is right of the ID i of ti, the ID i first moves down vertically, turns

right once, moves horizontally, turns left once, and moves downwards to the ID i′′.
Any of these procedures can be performed using the pieces prepared as above. Note that in
the case (2), the first letter xi of the string ti appears at the corner when we use the piece
(̄i, xi, ī′, h) is used to turn left, and the first letter yi of the string bi appears at the corner
when (ȳi, i′′, h̄, i′) is used. In the case (3), the pieces (̄i, xi, h̄, i′) and (ȳi, i′′, ī′, h) are used
for this purpose.
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Figure 5 Construction of a solution of the jigsaw puzzle from a solution of the instance of the
Post corresponding problem



10 On the Computational Complexity of Generalized Common Shape Puzzles

Following all the above steps, we can observe that each corresponding pair of IDs is
joined by either a straight vertical path in case (1) or a zig-zag path with two turns in
cases (2) or (3). Moreover, the ith letter in the common string that is produced by the
sequence si1 , . . . , sik

appears on all the horizontal edges of the ith piece (from left), except
its boundary and pieces on the vertical line that join two corresponding IDs. At this holds
even for the holes, we can fill all of the holes using the pieces that have been prepared for
filling. Finally, we can complete the frame by arranging the pieces that have been prepared
for the frame with the color 0 on the boundary.

We assume that the jigsaw puzzle has a solution. The pieces that correspond to ti and bi

form the respective rectangles as they have their unique colors. As all pieces have the color
h or h̄, therefore, every piece is arranged so that h̄ appears on the left side and h appears
on the right side. Because the color 0 matches no other colors, the rectangles for ti and the
corner pieces of color 0 on the upper edges are arranged on the top row, as are the rectangles
for bi and the corner pieces of color 0 on the lower edges. We need to form a rectangle using
the pieces of the color 0 on the left or right side. (Although it may appear that we can form
any polyomino other than rectangles, we cannot create any concave corner of 270◦ because
an edge with the color 0 cannot be placed inside the polyomino.)

According to the color properties, the ID color of each rectangle corresponding to ti

should be connected to the ID color of each rectangle for bi, and these k paths cannot cross.
If a path has no turn, it is necessary to use some copies of the piece with the color (̄i, i, h̄, h),
one copy of the piece (̄i, i′′, h̄, h), and some copies of the piece (ī′′, i′′, h̄, h). If a path has
turns, the only possible solution is that the color i of ti starts vertically, is changed to i′

after one 90◦ turn, moves horizontally, is changed to i′′ after one 90◦ turn, and moves down
to the piece in the rectangle corresponding to bi. The colors of ti and bi appear at each turn
on a horizontal edge. Thus, the remaining holes should be packed using the pieces with the
color (j̄, j, h̄, h) for the matching color j, and each pair of IDs of ti and bi should match.

Therefore, when the jigsaw puzzle has a solution, the pieces form a rectangle, the pieces
for ti are arranged on the top, the pieces for bi are arranged on the bottom, the corresponding
pairs of IDs of ti and bi match, and a consistent letter is obtained along each vertical line
of the pieces. Thus, si can be arranged following the sequence, and the same sequence of
letters that is produced by the sequences of ti and bi can be obtained, which provides a
solution to the Post correspondence problem, thereby completing the proof. J J

Lemmas 3 and 4 imply the following Theorem.

I Theorem 5. For two finite sets S1 and S2 of small polyominoes, the common multiple
shape puzzle for S1 and S2 is undecidable.

0 3 3211 2

Figure 6 Colored jigsaw piece for a polyomino. Each color i corresponds to a zigzag pattern
that represents the integer i in the binary system. The color ī is its negative.

Proof. (Outline.) We first demonstrate how to represent each piece of the jigsaw puzzle
in Lemmas 3 and 4 using a small polyomino. The basic concept is explained in [3, Fig. 7].
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Each color is represented by its original zig-zag pattern. See Figure 6 for an example of the
representation. Using the binary system, the size of the polyomino is O((log |C| )2), where
C is the set of colors.

We consider the set S1 of jigsaw pieces in Lemma 3 and the set S2 of jigsaw pieces in
Lemma 4. Different colors can be used for each set, except the common color 0. Subsequently,
according to Lemma 3, a solution to the common multiple shape puzzle is a shape that
corresponds to a rectangle. Moreover, according to Lemma 4, whether it can be constructed
using the pieces in S2 is undecidable. The number of colors used in S1 ∪ S2 is linear with
the size n of the input. Thus, each polyomino has an area of O((log n)2), which means that
it is small. This completes the proof. J J

5 Improved Solutions for Common Multiple Shapes

In this section, we provide a brief formulation of generalized common shape puzzles. The
rep-tile problem, which is a type of packing puzzle on polyominoes, has been formulated
and examined using several different computer methods [1] recently. In [1], the authors
demonstrated that the rep-tile problem can be formulated in a natural form that can be
handled using various methods. They compared a well-known puzzle solver, a few algorithms
based on dancing links, an MIP solver, and a SAT-based solver with respect to for solving
the packing puzzles. In [1], the authors concluded that the SAT-based solver is significantly
faster than the other methods. Therefore, we examined several instances that are available
online,8 and improved some of the known results. The notation for small polyominoes follows
ones given in these wab pages. (They are rather trivial as you can see in the patterns.)

Figure 7 Tiling patterns for F5Q4T4 improved from 760-omino to 160-omino

For example, the previous best known shape for F5Q4T4 on https://www.iread.it/Poly/
was a 760-omino, and our new shape is only 160-omino (Figure 7). The previous best known
shape for T5L4Q4 on https://sicherman.net/n445com/n445com.html, which was a 560-
omino, is improved to 480-omino (Figure 8).

The previous best known shapes for I5P5T5, I5P5Z5, L5P5X5, and P5U5V5 on https://sicherman.net/rosp/triplep.html
were 120-omino, 200-omino, 400-omino, and 160-omino, respectively. We obtain new better
shapes of 110-omino for I5P5T5 (Figure 9), 150-omino for I5P5Z5 (Figure 10), 360-omino
for L5P5X5 (Figure 11), and 120-omino for P5U5V5 (Figure 12), respectively.

Two main differences exist between the formulations of the common shape puzzle and
the packing puzzle in [1]. The first one is that the goal shape is not provided in the common
shape puzzle, whereas it is provided in the packing puzzle. The second is that we must

8 https://www.iread.it/Poly/ and https://sicherman.net/polycur.html.
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Figure 8 Tiling patterns for T5L4Q4 improved from 560-omino to 480-omino

Figure 9 Tiling patterns for I5P5T5 improved from 120-omino to 110-omino

create a common (or congruent) shape using two different sets S1 and S2 of pieces in the
common shape puzzle, whereas we have only one set of pieces in the packing puzzle.

To address the first point, we fix the bounding box of the goal shape. We first fix the
number of pieces (or |S1| and |S2| ), and we attempt to create possible bounding boxes that
contains these pieces.

In the packing puzzle, we can assume that each unit square of a goal shape is covered
by exactly once by a piece. However, in the common shape puzzle, each unit square of a
bounding box is covered by either 0 or 2 pieces. Moreover, when the square is covered by 2
pieces, these should be in S1 and S2.

We can modify the formulation of the packing puzzle in [1] to that for the common shape
puzzle using these concepts. Furthermore, it is straightforward to extend the problem from
two sets S1 and S2 to three sets S1, S2, and S3 (and more). We investigated several cases
that are available online, and achieved some improvements, as outlined in Appendix ??.

6 Concluding Remarks

We have considered the computational complexities of a generalized common shape puzzles,
in which the goal shapes are not provided. The puzzle is tractable when the number of
pieces is a constant; however, it is strongly NP-complete even if the piece sets consist of
small rectangles. Moreover, if we are allowed to use the copies of the pieces repeatedly, the
problem becomes undecidable. It is possible to formulate the puzzle for some several different
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Figure 10 Tiling patterns for I5P5Z5 improved from 200-omino to 150-omino

Figure 11 Tiling patterns for L5P5X5 improved from 400-omino to 360-omino

solvers in a natural form, and we improved some known records for concrete instances using a
SAT-based solver. However, we have not yet succeeded in confirming that the results are the
minimum solutions. For example, we verified the pattern in Figure 2 for each boundary box
with a size of i×b625/ic using 1 ≤ i ≤ 25 and confirmed that there are no smaller patterns in
these boundary boxes. However, this does not imply that the pattern in Figure 2 is the least
pattern. Thus, efficient searching for the determination of the minimum solution remains
open. We have only considered the polyominoes in this study, and thus, the extension to
general polygons is a natural topic for future work.

Figure 12 Tiling patterns for V5U5P5 improved from 160-omino to 120-omino
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