Skip to main content

On the Parameterized Complexity of Minus Domination

  • Conference paper
  • First Online:
SOFSEM 2024: Theory and Practice of Computer Science (SOFSEM 2024)

Abstract

Dominating Set is a well-studied combinatorial problem. Given a graph \(G=(V,E)\), a dominating function \(f:V(G)\rightarrow \{0, 1\}\) is a labeling of the vertices of G such that \(\sum _{w \in N[v]} f(w) \ge 1\) for each vertex \(v\in V(G)\), where \(N[v]=\{v\} \cup \{u \mid uv \in E(G)\}\). We study a generalization of Dominating Set called Minus Domination (in short, MD) where \(f: V(G) \rightarrow \{-1, 0, 1\}\). Such a function is said to be a minus dominating function if for each vertex \(v\in V(G)\), we have \(\sum _{w \in N[v]}f(w) \ge 1\). The objective is to minimize the weight of a minus domination function, which is \(f(V)= \sum _{u \in V(G)}f(u)\). The problem is NP-hard even on bipartite, planar, and chordal graphs.

In this paper, we study MD from the perspective of parameterized complexity. After observing the complexity of the problem with the natural parameters such as the number of vertices labeled 1, \(-1\) and 0, we study the problem with respect to structural parameters. We show that MD is fixed-parameter tractable when parameterized by twin-cover number, neighborhood diversity or the combined parameters component vertex deletion set and size of the largest component. In addition, we give an XP-algorithm when parameterized by distance to cluster number.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Due to space constraints, all the proofs of the results marked \((\star )\) will be presented in the full version of the paper.

References

  1. Chang, G.J.: Algorithmic aspects of domination in graphs. In: Pardalos, P.M., Du, D.-Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, pp. 221–282. Springer, New York (2013). https://doi.org/10.1007/978-1-4419-7997-1_26

    Chapter  Google Scholar 

  2. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  Google Scholar 

  3. Damaschke, P.: Minus domination in small-degree graphs. Discrete Appl. Math. 108(1), 53–64 (2001). Workshop on Graph Theoretic Concepts in Computer Science

    Article  MathSciNet  Google Scholar 

  4. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science, Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

    Book  Google Scholar 

  5. Drange, P.G., Dregi, M., van ’t Hof, P.: On the computational complexity of vertex integrity and component order connectivity. Algorithmica 76(4), 1181–1202 (2016). https://doi.org/10.1007/s00453-016-0127-x

    Article  MathSciNet  Google Scholar 

  6. Dunbar, J., Goddard, W., Hedetniemi, S., McRae, A., Henning, M.A.: The algorithmic complexity of minus domination in graphs. Discrete Appl. Math. 68(1), 73–84 (1996)

    Article  MathSciNet  Google Scholar 

  7. Dunbar, J., Hedetniemi, S., Henning, M.A., McRae, A.A.: Minus domination in regular graphs. Discrete Math. 149(1), 311–312 (1996)

    Article  MathSciNet  Google Scholar 

  8. Faria, L., Hon, W.-K., Kloks, T., Liu, H.-H., Wang, T.-M., Wang, Y.-L.: On complexities of minus domination. Discrete Optim. 22, 6–19 (2016). SI: ISCO 2014

    Article  MathSciNet  Google Scholar 

  9. Fomin, F.V., Gaspers, S., Kratsch, D., Liedloff, M., Saurabh, S.: Iterative compression and exact algorithms. Theor. Comput. Sci. 411(7), 1045–1053 (2010)

    Article  MathSciNet  Google Scholar 

  10. Ganian, R.: Twin-cover: beyond vertex cover in parameterized algorithmics. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 259–271. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28050-4_21

    Chapter  Google Scholar 

  11. Goyal, D., Jacob, A., Kumar, K., Majumdar, D., Raman, V.: Structural parameterizations of dominating set variants. In: Fomin, F.V., Podolskii, V.V. (eds.) CSR 2018. LNCS, vol. 10846, pp. 157–168. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90530-3_14

    Chapter  Google Scholar 

  12. Haynes, T.W., Hedetniemi, S., Slater, P.: Fundamentals of Domination in Graphs. CRC Press, Boca Raton (1998)

    Google Scholar 

  13. Hedetniemi, S.T., Laskar, R.C.: Bibliography on domination in graphs and some basic definitions of domination parameters. Discrete Math. 86(1), 257–277 (1990)

    Article  MathSciNet  Google Scholar 

  14. Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algorithms for cluster vertex deletion. Theory Comput. Syst. 47(1), 196–217 (2010). https://doi.org/10.1007/s00224-008-9150-x

    Article  MathSciNet  Google Scholar 

  15. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12(3), 415–440 (1987)

    Article  MathSciNet  Google Scholar 

  16. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica 64(1), 19–37 (2012). https://doi.org/10.1007/s00453-011-9554-x

    Article  MathSciNet  Google Scholar 

  17. Lee, C.-M., Chang, M.-S.: Variations of Y-dominating functions on graphs. Discret. Math. 308(18), 4185–4204 (2008)

    Article  MathSciNet  Google Scholar 

  18. Lin, J.-Y., Liu, C.-H., Poon, S.-H.: Algorithmic aspect of minus domination on small-degree graphs. In: Xu, D., Du, D., Du, D. (eds.) COCOON 2015. LNCS, vol. 9198, pp. 337–348. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21398-9_27

    Chapter  Google Scholar 

  19. Zheng, Y., Wang, J., Feng, Q.: Kernelization and lower bounds of the signed domination problem. In: Fellows, M., Tan, X., Zhu, B. (eds.) AAIM/FAW -2013. LNCS, vol. 7924, pp. 261–271. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38756-2_27

    Chapter  Google Scholar 

Download references

Acknowledgement

We would like to thank the anonymous reviewers for their helpful comments. The first author acknowledges SERB-DST for supporting this research via grant PDF/2021/003452. The fifth author acknowledges NBHM for supporting this research via project NBHM-02011/24/2023/6051. The fifth author would also like to acknowledge DST for supporting this research via project CRG/2023/007127.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sriram Bhyravarapu , Lawqueen Kanesh , A Mohanapriya , Nidhi Purohit , N. Sadagopan or Saket Saurabh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhyravarapu, S., Kanesh, L., Mohanapriya, A., Purohit, N., Sadagopan, N., Saurabh, S. (2024). On the Parameterized Complexity of Minus Domination. In: Fernau, H., Gaspers, S., Klasing, R. (eds) SOFSEM 2024: Theory and Practice of Computer Science. SOFSEM 2024. Lecture Notes in Computer Science, vol 14519. Springer, Cham. https://doi.org/10.1007/978-3-031-52113-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52113-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52112-6

  • Online ISBN: 978-3-031-52113-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics