Skip to main content

Embedding Formal Verification in Model-Driven Software Engineering with Slco: An Overview

  • Conference paper
  • First Online:
Formal Aspects of Component Software (FACS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14485))

Included in the following conference series:

  • 72 Accesses

Abstract

In 2009, the Simple Language of Communicating Objects (Slco) Domain-Specific Language was designed. Since then, a range of tools have been developed around this language to conduct research on a wide range of topics, all related to the construction of complex, component-based software, with formal verification being applied in every development step. In this paper, we present this range, and draw connections between the various, at first glance disparate, research results. We discuss the current status of the Slco framework, i.e., the language in combination with the tools, and plans for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Model-to-code transformations are also known as code generators.

  2. 2.

    Other works addressing the semantical impact of transformations include [28, 33, 46].

References

  1. Abdulla, P.A., Atig, M.F., Ngo, T.-P.: The best of both worlds: trading efficiency and optimality in fence insertion for TSO. In: Vitek, J. (ed.) ESOP 2015. LNCS, vol. 9032, pp. 308–332. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46669-8_13

    Chapter  Google Scholar 

  2. Alglave, J., Kroening, D., Nimal, V., Poetzl, D.: Don’t sit on the fence: a static analysis approach to automatic fence insertion. ACM Trans. Progr. Lang. Syst. 39(2), 6 (2017)

    Google Scholar 

  3. Amrani, M., et al.: Formal verification techniques for model transformations: a tridimensional classification. J. Object Technol. 14(3), 1–43 (2015). https://doi.org/10.5381/jot.2015.14.3.a1

    Article  Google Scholar 

  4. van Amstel, M.: Assessing and improving the quality of model transformations. Ph.D. thesis, Eindhoven University of Technology (2011)

    Google Scholar 

  5. van Amstel, M., van den Brand, M., Engelen, L.: An exercise in iterative domain-specific language design. In: EVOL/IWPSE, pp. 48–57. ACM Press (2010)

    Google Scholar 

  6. van Amstel, M., van den Brand, M., Engelen, L.: Using a DSL and fine-grained model transformations to explore the boudaries of model verification. In: MVV, pp. 120–127. IEEE Computer Society Press (2011)

    Google Scholar 

  7. van Amstel, M., van den Brand, M., Protić, Z., Verhoeff, T.: Model-driven software engineering. In: Hamberg, R., Verriet, J. (eds.) Automation in Warehouse Development, pp. 45–58. Springer, London (2011). https://doi.org/10.1007/978-0-85729-968-0_4

    Chapter  Google Scholar 

  8. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)

    Google Scholar 

  9. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development, Coq’ Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. An EATCS Series, Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-662-07964-5

    Book  Google Scholar 

  10. Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend, 2nd edn. Packt Publishing, Birmingham (2016)

    Google Scholar 

  11. Blech, J., Glesner, S., Leitner, J.: Formal verification of java code generation from UML models. In: Fujaba Days 2005, pp. 49–56 (2005)

    Google Scholar 

  12. Blom, S., Darabi, S., Huisman, M., Oortwijn, W.: The VerCors tool set: verification of parallel and concurrent software. In: Polikarpova, N., Schneider, S. (eds.) IFM 2017. LNCS, vol. 10510, pp. 102–110. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66845-1_7

    Chapter  Google Scholar 

  13. Bošnački, D., Edelkamp, S., Sulewski, D., Wijs, A.: Parallel probabilistic model checking on general purpose graphics processors. STTT 13(1), 21–35 (2011). https://doi.org/10.1007/s10009-010-0176-4

    Article  Google Scholar 

  14. Bourke, T., Brun, L., Dagand, P.E., Leroy, X., Pouzet, M., Rieg, L.: A formally verified compiler for Lustre. In: PLDI. ACM SIGPLAN Notices, vol. 52, pp. 586–601. ACM (2017)

    Google Scholar 

  15. Bošnački, D., et al.: Dependency safety for java: implementing failboxes. In: PPPJ: Virtual Machines, Languages, and Tools, pp. 15:1–15:6. ACM (2016)

    Google Scholar 

  16. Bošnački, D., et al.: Towards modular verification of threaded concurrent executable code generated from DSL models. In: FACS, pp. 141–160 (2015)

    Google Scholar 

  17. Bošnački, D., Edelkamp, S., Sulewski, D., Wijs, A.: GPU-PRISM: an extension of PRISM for general purpose graphics processing units. In: PDMC, pp. 17–19. IEEE (2010). https://doi.org/10.1109/PDMC-HiBi.2010.11

  18. Büchi, J.: On a decision method in restricted second order arithmetic. In: CLMPS, pp. 425–435. Stanford University Press (1962)

    Google Scholar 

  19. Bunte, O., et al.: The mCRL2 toolset for analysing concurrent systems. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 21–39. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1_2

    Chapter  Google Scholar 

  20. Cassee, N., Neele, T., Wijs, A.: On the scalability of the GPUexplore explicit-state model checker. In: GaM. EPTCS, vol. 263, pp. 38–52. Open Publishing Association (2017)

    Google Scholar 

  21. Chaki, R., Wijs, A.: Formally characterizing the effect of model transformations on system properties. In: Tapia Tarifa, S.L., Proença, J. (eds.) FACS 2022. LNCS, vol. 13712, pp. 39–58. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20872-0_3

    Chapter  Google Scholar 

  22. Di Ruscio, D., Kolovos, D., de Lara, J., Pierantonio, A., Tisi, M., Wimmer, M.: Low-code development and model-driven engineering: two sides of the same coin? Softw. Syst. Model. 21, 437–446 (2022)

    Article  Google Scholar 

  23. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.: Spot 2.0 — a framework for LTL and \(\omega \)-automata manipulation. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46520-3_8

    Chapter  Google Scholar 

  24. Ehrig, H., Pfender, M., Schneider, H.: Graph-grammars: an algebraic approach. In: SWAT, pp. 167–180. IEEE Computer Society Press (1973)

    Google Scholar 

  25. Engelen, L.: From napkin sketches to reliable software. Ph.D. thesis, Eindhoven University of Technology (2012)

    Google Scholar 

  26. Feijen, W., van Gasteren, A.: The alternating bit protocol. In: Feijen, W., van Gasteren, A. (eds.) On a Method of Multiprogramming. Monographs in Computer Science, pp. 333–345. Springer, New York (1999). https://doi.org/10.1007/978-1-4757-3126-2_30

    Chapter  Google Scholar 

  27. Giannakopoulou, D.: Model checking for concurrent software architectures. Ph.D. thesis, University of London (1999)

    Google Scholar 

  28. Giese, H., Lambers, L.: Towards automatic verification of behavior preservation for model transformation via invariant checking. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 249–263. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33654-6_17

    Chapter  Google Scholar 

  29. van Glabbeek, R., Luttik, S., Trčka, N.: Branching bisimilarity with explicit divergence. Fundam. Inf. 93(4), 371–392 (2009)

    MathSciNet  Google Scholar 

  30. van den Haak, L.B., Wijs, A., van den Brand, M., Huisman, M.: Formal methods for GPGPU programming: is the demand met? In: Dongol, B., Troubitsyna, E. (eds.) IFM 2020. LNCS, vol. 12546, pp. 160–177. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63461-2_9

    Chapter  Google Scholar 

  31. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects Comput. 6(5), 512–535 (1994)

    Article  Google Scholar 

  32. Holzmann, G.: The model checker spin. IEEE Trans. Software Eng. 23(5), 279–295 (1997). https://doi.org/10.1109/32.588521

    Article  Google Scholar 

  33. Hülsbusch, M., König, B., Rensink, A., Semenyak, M., Soltenborn, C., Wehrheim, H.: Showing full semantics preservation in model transformation - a comparison of techniques. In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp. 183–198. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16265-7_14

    Chapter  Google Scholar 

  34. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.: VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 41–55. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-5_4

    Chapter  Google Scholar 

  35. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Bruel, J.-M. (ed.) MODELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006). https://doi.org/10.1007/11663430_14

    Chapter  Google Scholar 

  36. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin: high-performance language-independent model checking. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 692–707. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_61

    Chapter  Google Scholar 

  37. Khan, M.H., Hassan, O., Khan, S.: Accelerating SpMV multiplication in probabilistic model checkers using GPUs. In: Cerone, A., Ölveczky, P.C. (eds.) ICTAC 2021. LNCS, vol. 12819, pp. 86–104. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85315-0_6

    Chapter  Google Scholar 

  38. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architecture(TM): Practice and Promise. Addison-Wesley Professional, Boston (2005)

    Google Scholar 

  39. Kozen, D.: Results on the propositional \(\mu \)-calculus. Theor. Comput. Sci. 27(3), 333–354 (1983)

    Article  MathSciNet  Google Scholar 

  40. Kumar, R., Myreen, M., Norrish, M., Owens, S.: CakeML: a verified implementation of ML. In: POPL. ACM SIGPLAN Notices, vol. 49, pp. 179–191. ACM (2014)

    Google Scholar 

  41. Lang, F.: Exp.Open 2.0: a flexible tool integrating partial order, compositional, and on-the-fly verification methods. In: Romijn, J., Smith, G., van de Pol, J. (eds.) IFM 2005. LNCS, vol. 3771, pp. 70–88. Springer, Heidelberg (2005). https://doi.org/10.1007/11589976_6

    Chapter  Google Scholar 

  42. Leiserson, C.E., et al.: There’s plenty of room at the top: what will drive computer performance after Moore’s law? Science 368(6495) (2020). https://doi.org/10.1126/science.aam9744

  43. Leroy, X.: Formal proofs of code generation and verification tools. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM 2014. LNCS, vol. 8702, pp. 1–4. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10431-7_1

    Chapter  Google Scholar 

  44. Linden, A., Wolper, P.: A verification-based approach to memory fence insertion in PSO memory systems. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 339–353. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7_24

    Chapter  Google Scholar 

  45. Mateescu, R., Wijs, A.: Property-dependent reductions adequate with divergence-sensitive branching bisimilarity. Sci. Comput. Program. 96(3), 354–376 (2014)

    Article  Google Scholar 

  46. Narayanan, A., Karsai, G.: Towards verifying model transformations. In: Proceedings of 7th International Workshop on Graph Transformation and Visual Modeling Techniques (GT-VMT 2008). ENTCS, vol. 211, pp. 191–200. Elsevier (2008)

    Google Scholar 

  47. Neele, T., Wijs, A., Bošnački, D., van de Pol, J.: Partial-order reduction for GPU model checking. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 357–374. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46520-3_23

    Chapter  Google Scholar 

  48. Pelánek, R.: BEEM: benchmarks for explicit model checkers. In: Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73370-6_17

    Chapter  Google Scholar 

  49. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations of Computer Science (FOCS), pp. 46–57. IEEE Computer Society (1977)

    Google Scholar 

  50. de Putter, S., Wijs, A.: Verifying a verifier: on the formal correctness of an LTS transformation verification technique. In: Stevens, P., Wąsowski, A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 383–400. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49665-7_23

    Chapter  Google Scholar 

  51. de Putter, S., Wijs, A.: A formal verification technique for behavioural model-to-model transformations. Form. Asp. Comput. 30(1), 3–43 (2018). https://link.springer.com/article/10.1007/s00165-017-0437-z

  52. de Putter, S., Wijs, A.: Lock and fence when needed: state space exploration + static analysis = improved fence and lock insertion. In: Dongol, B., Troubitsyna, E. (eds.) IFM 2020. LNCS, vol. 12546, pp. 297–317. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63461-2_16

    Chapter  Google Scholar 

  53. de Putter, S., Wijs, A., Zhang, D.: The SLCO framework for verified, model-driven construction of component software. In: Bae, K., Ölveczky, P.C. (eds.) FACS 2018. LNCS, vol. 11222, pp. 288–296. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02146-7_15

    Chapter  Google Scholar 

  54. Ragan-Kelley, J., et al.: Halide: decoupling algorithms from schedules for high-performance image processing. Commun. ACM 61(1), 106–115 (2017). https://doi.org/10.1145/3150211

    Article  Google Scholar 

  55. Rahim, L., Whittle, J.: A survey of approaches for verifying model transformations. Softw. Syst. Model. 1–26 (2013). https://doi.org/10.1007/s10270-013-0358-0

  56. Şakar, Ö., Safari, M., Huisman, M., Wijs, A.: Alpinist: an annotation-aware GPU program optimizer. In: TACAS 2022. LNCS, vol. 13244, pp. 332–352. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99527-0_18

    Chapter  Google Scholar 

  57. Shasha, D., Snir, M.: Efficient and correct execution of parallel programs that share memory. ACM Trans. Program. Lang. Syst. 10(2), 282–312 (1988)

    Article  Google Scholar 

  58. Stenzel, K., Moebius, N., Reif, W.: Formal verification of QVT transformations for code generation. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 533–547. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24485-8_39

    Chapter  Google Scholar 

  59. van der Vegt, S., Laarman, A.: A parallel compact hash table. In: Kotásek, Z., Bouda, J., Černá, I., Sekanina, L., Vojnar, T., Antoš, D. (eds.) MEMICS 2011. LNCS, vol. 7119, pp. 191–204. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-25929-6_18

    Chapter  Google Scholar 

  60. Wijs, A.: Define, verify, refine: correct composition and transformation of concurrent system semantics. In: Fiadeiro, J.L., Liu, Z., Xue, J. (eds.) FACS 2013. LNCS, vol. 8348, pp. 348–368. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07602-7_21

    Chapter  Google Scholar 

  61. Wijs, A., Engelen, L.: Efficient property preservation checking of model refinements. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 565–579. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7_41

    Chapter  Google Scholar 

  62. Wijs, A., Engelen, L.: REFINER: towards formal verification of model transformations. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 258–263. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06200-6_21

    Chapter  Google Scholar 

  63. Wijs, A.J., Bošnački, D.: Improving GPU sparse matrix-vector multiplication for probabilistic model checking. In: Donaldson, A., Parker, D. (eds.) SPIN 2012. LNCS, vol. 7385, pp. 98–116. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31759-0_9

    Chapter  Google Scholar 

  64. Wijs, A., Engelen, L.: Incremental formal verification for model refining. In: MoDeVVa, pp. 29–34. ACM Press (2012)

    Google Scholar 

  65. Wijs, A., Osama, M.: GPUexplore 3.0: GPU accelerated state space exploration for concurrent systems with data. In: Caltais, G., Schilling, C. (eds.) SPIN 2023. LNCS, vol. 13872, pp. 188–197. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-32157-3_11

    Chapter  Google Scholar 

  66. Wijs, A., Osama, M.: A GPU tree database for many-core explicit state space exploration. In: Sankaranarayanan, S., Sharygina, N. (eds.) TACAS 2023, Part I. LNCS, vol. 13993, pp. 684–703. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30823-9_35

    Chapter  Google Scholar 

  67. Wijs, A., Wiłkowski, M.: Modular indirect push-button formal verification of multi-threaded code generators. In: Ölveczky, P.C., Salaün, G. (eds.) SEFM 2019. LNCS, vol. 11724, pp. 410–429. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30446-1_22

    Chapter  Google Scholar 

  68. Wijs, A.: BFS-based model checking of linear-time properties with an application on GPUs. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 472–493. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6_26

    Chapter  Google Scholar 

  69. Wijs, A., Bošnački, D.: GPUexplore: many-core on-the-fly state space exploration using GPUs. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 233–247. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_16

    Chapter  Google Scholar 

  70. Wijs, A., Bošnački, D.: Many-core on-the-fly model checking of safety properties using GPUs. STTT 18(2), 169–185 (2016). https://doi.org/10.1007/s10009-015-0379-9

    Article  Google Scholar 

  71. Wijs, A., Neele, T., Bošnački, D.: GPUexplore 2.0: unleashing GPU explicit-state model checking. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 694–701. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48989-6_42

    Chapter  Google Scholar 

  72. Zhang, D., et al.: Towards verified java code generation from concurrent state machines. In: AMT@MoDELS, pp. 64–69 (2014)

    Google Scholar 

  73. Zhang, D., et al.: Verifying atomicity preservation and deadlock freedom of a generic shared variable mechanism used in model-to-code transformations. In: Hammoudi, S., Pires, L.F., Selic, B., Desfray, P. (eds.) MODELSWARD 2016. CCIS, vol. 692, pp. 249–273. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66302-9_13

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Wijs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wijs, A. (2024). Embedding Formal Verification in Model-Driven Software Engineering with Slco: An Overview. In: Cámara, J., Jongmans, SS. (eds) Formal Aspects of Component Software. FACS 2023. Lecture Notes in Computer Science, vol 14485. Springer, Cham. https://doi.org/10.1007/978-3-031-52183-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52183-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52182-9

  • Online ISBN: 978-3-031-52183-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics