Skip to main content

Formal Model Engineering of Distributed CPSs Using AADL: From Behavioral AADL Models to Multirate Hybrid Synchronous AADL

  • Conference paper
  • First Online:
Formal Aspects of Component Software (FACS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14485))

Included in the following conference series:

  • 96 Accesses

Abstract

A promising way of integrating formal methods into industrial system design is to endow industrial modeling tools with automatic formal analyses. In this paper we identify some challenges for providing such formal methods “backends” for cyber-physical systems (CPSs), and argue that Maude could meet these challenges. We then give an overview of our research on integrating Maude analysis into the OSATE tool environment for the industrial CPS modeling standard AADL.

Since many critical distributed CPSs are “logically synchronous,” a key feature making automatic formal analysis practical is the use of synchronizers for CPSs. We identify a sublanguage of AADL to describe synchronous CPS designs. We can then use Maude to effectively verify such synchronous designs, which under certain conditions also verifies the corresponding asynchronous distributed systems, with clock skews and communication delays. We then explain how we have extended our methods to multirate systems and to CPSs with continuous behaviors.

We illustrate the effectiveness of Maude-based formal model engineering of industrial CPSs on avionics control systems and collections of drones. Finally, we identify future directions in this line of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We do not have space to discuss related work in this overview paper, but our papers have extensive discussions of related work that justify our claims.

References

  1. Abrial, J.-R., Börger, E., Langmaack, H. (eds.): Formal Methods for Industrial Applications. LNCS, vol. 1165. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0027227

    Book  Google Scholar 

  2. Al-Nayeem, A., Sha, L., Cofer, D.D., Miller, S.M.: Pattern-based composition and analysis of virtually synchronized real-time distributed systems. In: 2012 IEEE/ACM Third International Conference on Cyber-Physical Systems, pp. 65–74. IEEE (2012)

    Google Scholar 

  3. Al-Nayeem, A., Sun, M., Qiu, X., Sha, L., Miller, S.P., Cofer, D.D.: A formal architecture pattern for real-time distributed systems. In: Proceedings of RTSS, pp. 161–170. IEEE, USA (2009)

    Google Scholar 

  4. AlTurki, M., Meseguer, J.: PVeStA: a parallel statistical model checking and quantitative analysis tool. In: Corradini, A., Klin, B., Cîrstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 386–392. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22944-2_28

    Chapter  Google Scholar 

  5. Arias, J., Bae, K., Olarte, C., Ölveczky, P.C., Petrucci, L., Rømming, F.: Rewriting logic semantics and symbolic analysis for parametric timed automata. In: 8th ACM SIGPLAN International Workshop on Formal Techniques for Safety-Critical Systems (FTSCS 2022), pp. 3–15. ACM (2022)

    Google Scholar 

  6. Arias, J., Bae, K., Olarte, C., Ölveczky, P.C., Petrucci, L., Rømming, F.: Symbolic analysis and parameter synthesis for time Petri nets using Maude and SMT solving. In: Gomes, L., Lorenz, R. (eds.) Application and Theory of Petri Nets and Concurrency. PETRI NETS 2023. LNCS, vol. 13929. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-33620-1_20

  7. Arney, D., Jetley, R., Jones, P., Lee, I., Sokolsky, O.: Formal methods based development of a PCA infusion pump reference model: Generic infusion pump (GIP) project. In: HCMDSS-MDPnP, pp. 23–33. IEEE (2007)

    Google Scholar 

  8. Bae, K., Ölveczky, P.C., Feng, T.H., Tripakis, S.: Verifying Ptolemy II discrete-event models using Real-Time Maude. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 717–736. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10373-5_37

    Chapter  Google Scholar 

  9. Bae, K., Krisiloff, J., Meseguer, J., Ölveczky, P.C.: Designing and verifying distributed cyber-physical systems using Multirate PALS: an airplane turning control system case study. Sci. Comput. Program. 103, 13–50 (2015)

    Article  Google Scholar 

  10. Bae, K., Lee, J.: Bounded model checking of signal temporal logic properties using syntactic separation. Proc. ACM Program. Lang. 3(POPL), 1–30 (2019)

    Google Scholar 

  11. Bae, K., Meseguer, J., Ölveczky, P.C.: Formal patterns for multi-rate distributed real-time systems. In: Păsăreanu, C.S., Salaün, G. (eds.) FACS 2012. LNCS, vol. 7684, pp. 1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35861-6_1

    Chapter  Google Scholar 

  12. Bae, K., Meseguer, J., Ölveczky, P.C.: Formal patterns for multirate distributed real-time systems. Sci. Comput. Program. 91, 3–44 (2014)

    Article  Google Scholar 

  13. Bae, K., Ölveczky, P.C.: MSYNC: a generalized formal design pattern for virtually synchronous multirate cyber-physical systems. ACM Trans. Embed. Comput. Syst. (TECS) 20(5s), 1–26 (2021)

    Article  Google Scholar 

  14. Bae, K., Ölveczky, P.C., Al-Nayeem, A., Meseguer, J.: Synchronous AADL and its formal analysis in Real-Time Maude. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 651–667. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24559-6_43

    Chapter  Google Scholar 

  15. Bae, K., Ölveczky, P.C., Feng, T.H., Lee, E.A., Tripakis, S.: Verifying hierarchical Ptolemy II discrete-event models using Real-Time Maude. Sci. Comput. Program. 77(12), 1235–1271 (2012)

    Article  Google Scholar 

  16. Bae, K., Ölveczky, P.C., Kong, S., Gao, S., Clarke, E.M.: SMT-based analysis of virtually synchronous distributed hybrid systems. In: Proceedings of HSCC, pp. 145–154. ACM, New York, NY, USA (2016)

    Google Scholar 

  17. Bae, K., Ölveczky, P.C., Meseguer, J.: Definition, semantics, and analysis of Multirate Synchronous AADL. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 94–109. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06410-9_7

    Chapter  Google Scholar 

  18. Bae, K., Ölveczky, P.C., Meseguer, J., Al-Nayeem, A.: The SynchAADL2Maude tool. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 59–62. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28872-2_4

    Chapter  Google Scholar 

  19. Bae, K., Rocha, C.: Guarded terms for rewriting modulo SMT. In: Proença, J., Lumpe, M. (eds.) FACS 2017. LNCS, vol. 10487, pp. 78–97. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68034-7_5

    Chapter  Google Scholar 

  20. Bae, K., Rocha, C.: Symbolic state space reduction with guarded terms for rewriting modulo SMT. Sci. Comput. Program. 178, 20–42 (2019)

    Article  Google Scholar 

  21. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_14

    Chapter  Google Scholar 

  22. Barrett, C., Stump, A., Tinelli, C., et al.: The SMT-LIB standard: Version 2.0. In: SMT. vol. 13, p. 14 (2010)

    Google Scholar 

  23. Baudart, G., Benveniste, A., Bourke, T.: Loosely time-triggered architectures: improvements and comparisons. ACM Trans. Embed. Comput. Syst. (TECS) 15(4), 1–26 (2016)

    Article  Google Scholar 

  24. Bozzano, M., Bruintjes, H., Cimatti, A., Katoen, J.-P., Noll, T., Tonetta, S.: Formal methods for aerospace systems. In: Nakajima, S., Talpin, J.-P., Toyoshima, M., Yu, H. (eds.) Cyber-Physical System Design from an Architecture Analysis Viewpoint, pp. 133–159. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-4436-6_6

    Chapter  Google Scholar 

  25. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_18

    Chapter  Google Scholar 

  26. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: HyComp: an SMT-based model checker for hybrid systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 52–67. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_4

    Chapter  Google Scholar 

  27. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71999-1

    Book  Google Scholar 

  28. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 737–744. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_49

    Chapter  Google Scholar 

  29. Eidson, J.: https://www.nist.gov/document/tutorial-basicpdf/ (2005). Accessed 16 Jul 2023

  30. Eidson, J.C., Fischer, M., White, J.: IEEE-1588™ standard for a precision clock synchronization protocol for networked measurement and control systems. In: Proceedings of the 34th Annual Precise Time and Time Interval Systems and Applications Meeting, pp. 243–254 (2002)

    Google Scholar 

  31. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL: An Introduction to the SAE Architecture Analysis and Design Language. Addison-Wesley, USA (2012)

    Google Scholar 

  32. França, R., Bodeveix, J.P., Filali, M., Rolland, J.F., Chemouil, D., Thomas, D.: The AADL Behaviour Annex - experiments and roadmap. In: Proceedings of ICECCS 2007. IEEE, USA (2007)

    Google Scholar 

  33. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_30

    Chapter  Google Scholar 

  34. Gao, S., Kong, S., Clarke, E.M.: dReal: an SMT solver for nonlinear theories over the reals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 208–214. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2_14

    Chapter  Google Scholar 

  35. Goguen, J., Meseguer, J.: Order-sorted algebra I: equational deduction for multiple inheritance, overloading, exceptions and partial operations. Theoret. Comput. Sci. 105, 217–273 (1992)

    Article  MathSciNet  Google Scholar 

  36. Kim, C., Sun, M., Mohan, S., Yun, H., Sha, L., Abdelzaher, T.F.: A framework for the safe interoperability of medical devices in the presence of network failures. In: ICCPS, pp. 149–158 (2010)

    Google Scholar 

  37. Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: \(\delta \)-reachability analysis for hybrid systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–205. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_15

    Chapter  Google Scholar 

  38. Kopetz, H., Bauer, G.: The time-triggered architecture. Proc. IEEE 91(1), 112–126 (2003)

    Article  Google Scholar 

  39. Lee, J., Bae, K., Ölveczky, P.C.: An extension of HybridSynchAADL and its application to collaborating autonomous UAVs. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal Methods, Verification and Validation. Adaptation and Learning. ISoLA 2022. LNCS, vol. 13703. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19759-8_4

  40. Lee, J., Bae, K., Ölveczky, P.C., Kim, S., Kang, M.: Modeling and formal analysis of virtually synchronous cyber-physical systems in AADL. Int. J. Softw. Tools Technol. Transfer 24(6), 911–948 (2022)

    Article  Google Scholar 

  41. Lee, J., Kim, S., Bae, K., Ölveczky, P.C.: Hybrid SynchAADL: modeling and formal analysis of virtually synchronous CPSs in AADL. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp. 491–504. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81685-8_23

    Chapter  Google Scholar 

  42. Lee, J., Yu, G., Bae, K.: Efficient SMT-based model checking for signal temporal logic. In: 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 343–354. IEEE (2021)

    Google Scholar 

  43. Leen, G., Heffernan, D., Dunne, A.: Digital networks in the automotive vehicle. Comput. Control Eng. J. 10(6), 257–266 (1999)

    Article  Google Scholar 

  44. Lepri, D., Ábrahám, E., Ölveczky, P.C.: Sound and complete timed CTL model checking of timed Kripke structures and real-time rewrite theories. Sci. Comput. Program. 99, 128–192 (2015)

    Article  Google Scholar 

  45. Liu, S., Meseguer, J., Ölveczky, P.C., Zhang, M., Basin, D.: Bridging the semantic gap between qualitative and quantitative models of distributed systems. Proc. ACM Program. Lang. 6(OOPSLA2), 315–344 (2022)

    Article  Google Scholar 

  46. Liu, S., Ölveczky, P.C., Meseguer, J.: Modeling and analyzing mobile ad hoc networks in Real-Time Maude. J. Log. Algebraic Methods Program. 85(1), 34–66 (2016). https://doi.org/10.1016/j.jlamp.2015.05.002

    Article  MathSciNet  Google Scholar 

  47. Mavridou, A., Stachtiari, E., Bliudze, S., Ivanov, A., Katsaros, P., Sifakis, J.: Architecture-based design: a satellite on-board software case study. In: Kouchnarenko, O., Khosravi, R. (eds.) FACS 2016. LNCS, vol. 10231, pp. 260–279. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57666-4_16

    Chapter  Google Scholar 

  48. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theoret. Comput. Sci. 96(1), 73–155 (1992)

    Article  MathSciNet  Google Scholar 

  49. Meseguer, J.: Taming distributed system complexity through formal patterns. In: Arbab, F., Ölveczky, P.C. (eds.) FACS 2011. LNCS, vol. 7253, pp. 1–2. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35743-5_1

    Chapter  Google Scholar 

  50. Meseguer, J.: Twenty years of rewriting logic. J. Logic Algebraic Program. 81(7), 721–781 (2012)

    Article  MathSciNet  Google Scholar 

  51. Meseguer, J.: Taming distributed system complexity through formal patterns. Sci. Comput. Program. 83, 3–34 (2014)

    Article  Google Scholar 

  52. Meseguer, J., Ölveczky, P.C.: Formalization and correctness of the PALS architectural pattern for distributed real-time systems. Theoret. Comput. Sci. 451, 1–37 (2012)

    Article  MathSciNet  Google Scholar 

  53. Meseguer, J., Roşu, G.: The rewriting logic semantics project: a progress report. Inf. Comput. 231, 38–69 (2013)

    Article  MathSciNet  Google Scholar 

  54. Miller, S., Cofer, D., Sha, L., Meseguer, J., Al-Nayeem, A.: Implementing logical synchrony in integrated modular avionics. In: Proceedings of IEEE/AIAA 28th Digital Avionics Systems Conference. IEEE, USA (2009)

    Google Scholar 

  55. Ölveczky, P.C., Boronat, A., Meseguer, J.: Formal semantics and analysis of behavioral AADL models in Real-Time Maude. In: Hatcliff, J., Zucca, E. (eds.) FMOODS/FORTE -2010. LNCS, vol. 6117, pp. 47–62. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13464-7_5

    Chapter  Google Scholar 

  56. Ölveczky, P.C., Boronat, A., Meseguer, J., Pek, E.: Formal semantics and analysis of behavioral AADL models in Real-Time Maude. https://olveczky.se/RealTimeMaude/AADL/webTechRep.pdf (2010)

  57. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude. High.-Order Symbolic Compu. 20(1–2), 161–196 (2007)

    Article  Google Scholar 

  58. Ölveczky, P.C., Meseguer, J.: The Real-Time Maude Tool. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 332–336. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_23

    Chapter  Google Scholar 

  59. Ölveczky, P.C.: Real-Time Maude and its applications. In: Escobar, S. (ed.) WRLA 2014. LNCS, vol. 8663, pp. 42–79. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12904-4_3

    Chapter  Google Scholar 

  60. Ölveczky, P.C., Thorvaldsen, S.: Formal modeling, performance estimation, and model checking of wireless sensor network algorithms in Real-Time Maude. Theor. Comput. Sci. 410(2–3), 254–280 (2009). https://doi.org/10.1016/j.tcs.2008.09.022

    Article  MathSciNet  Google Scholar 

  61. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reason. 41(2), 143–189 (2008)

    Article  MathSciNet  Google Scholar 

  62. Ptolemaeus, C. (ed.): System Design, Modeling, and Simulation using Ptolemy II. Ptolemy.org (2014). http://ptolemy.org/books/Systems

  63. Rocha, C., Meseguer, J., Muñoz, C.: Rewriting modulo SMT and open system analysis. J. Logical Algebraic Methods Program. 86(1), 269–297 (2017)

    Article  MathSciNet  Google Scholar 

  64. Rubio, R., Martí-Oliet, N., Pita, I., Verdejo, A.: QMaude: quantitative specification and verification in rewriting logic. In: Chechik, M., Katoen, JP., Leucker, M. (eds.) Formal Methods. FM 2023. LNCS, vol. 14000. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-27481-7_15

  65. Rushby, J.: Systematic formal verification for fault-tolerant time-triggered algorithms. IEEE Trans. Software Eng. 25(5), 651–660 (1999)

    Article  Google Scholar 

  66. Sha, L., Al-Nayeem, A., Sun, M., Meseguer, J., Ölveczky, P.C.: PALS: Physically asynchronous logically synchronous systems. Tech. rep., Department of Computer Science, University of Illinois at Urbana-Champaign (2009). http://hdl.handle.net/2142/11897

  67. Steiner, W., Bauer, G., Hall, B., Paulitsch, M., Varadarajan, S.: TTEthernet dataflow concept. In: 2009 Eighth IEEE International Symposium on Network Computing and Applications, pp. 319–322. IEEE (2009)

    Google Scholar 

  68. Steiner, W., Rushby, J.: TTA and PALS: Formally verified design patterns for distributed cyber-physical systems. In: 2011 IEEE/AIAA 30th Digital Avionics Systems Conference, pp. 7B5–1. IEEE (2011)

    Google Scholar 

  69. Stevens, B.L., Lewis, F.L.: Aircraft Control and Simulation. John Wiley & Sons (2003)

    Google Scholar 

  70. Tripakis, S., Pinello, C., Benveniste, A., Sangiovanni-Vincent, A., Caspi, P., Di Natale, M.: Implementing synchronous models on loosely time triggered architectures. IEEE Trans. Comput. 57(10), 1300–1314 (2008)

    Article  MathSciNet  Google Scholar 

  71. Whitters, G., Nigam, V., Talcott, C.L.: Incremental rewriting modulo SMT. In: Pientka, B., Tinelli, C. (eds.) Automated Deduction – CADE 29. CADE 2023. LNCS, vol. 14132. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38499-8_32

  72. Yu, G., Bae, K.: Maude-SE: A tight integration of Maude and SMT solvers. Proc, International Workshop on Rewriting Logic and its Applications (2020)

    Google Scholar 

  73. Yu, G., Lee, J., Bae, K.: STLMC: robust STL model checking of hybrid systems using SMT. In: Shoham, S., Vizel, Y. (eds.) Computer Aided Verification. CAV 2022. LNCS, vol. 13371. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-13185-1_26

Download references

Acknowledgments

We thank Olga Kouchnarenko and the organizers of FACS 2023 for inviting us to present this work summarizing some of our “software component-based” research to celebrate the 20th anniversary of the FACS conference. In this paper we report on research initiated by some of us and Darren Cofer and Steven Miller at Rockwell Collins and José Meseguer and Lui Sha at University of Illinois at Urbana-Champaign; we sincerely thank them all, as well as the coauthors of all the papers summarized in this paper. Bae was supported by the National Research Foundation of Korea(NRF) grants funded by the Korea government(MSIT) (No. 2021R1A5A1021944 and No. RS-2023-00251577).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyungmin Bae .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bae, K., Ölveczky, P.C. (2024). Formal Model Engineering of Distributed CPSs Using AADL: From Behavioral AADL Models to Multirate Hybrid Synchronous AADL. In: Cámara, J., Jongmans, SS. (eds) Formal Aspects of Component Software. FACS 2023. Lecture Notes in Computer Science, vol 14485. Springer, Cham. https://doi.org/10.1007/978-3-031-52183-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52183-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52182-9

  • Online ISBN: 978-3-031-52183-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics