Skip to main content

High-Performance Computing for Astrophysical Simulations and Astroparticle Observations

  • Conference paper
  • First Online:
High Performance Computing (CARLA 2023)

Abstract

Simulations in astrophysics play a crucial role in testing models and comparing them with observational data, for which High-Performance Computing has become indispensable for handling complex scenarios. In this paper, we present two important applications in astrophysical simulations. First, we explore the adaptation of the Pencil Code to study the evolution of magnetic field configurations in stratified stars. Second, we highlight the ARTI framework developed to estimate signals at the Latin American Giant Observatory. In addition, we discuss the importance of reproducibility in scientific analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/pencil-code/pencil-code.git.

  2. 2.

    https://github.com/lagoproject/arti.

  3. 3.

    https://exacore.uniandes.edu.co/es/que-hacemos/procesamiento.

  4. 4.

    https://hub.docker.com/u/lagocollaboration.

  5. 5.

    https://lagoproject.github.io/DMP/.

  6. 6.

    https://exacore.uniandes.edu.co/es/que-hacemos/procesamiento.

  7. 7.

    http://wiki.sc3.uis.edu.co/index.php/Cluster_Guane.

  8. 8.

    https://www.renata.edu.co/.

References

  1. Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., et al.: Geant4 - a simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A: Acceler. Spectromet. Detect. Associat. Equip. 506(3), 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

  2. Asorey, H., Dasso, S., Núñez, L.A., Pérez, Y., Sarmiento-Cano, C., Suárez-Durán, M., the LAGO Collaboration: The LAGO space weather program: drectional geomagnetic effects, background fluence calculations and multi-spectral data analysis. In: The 34th International Cosmic Ray Conference, vol. PoS(ICRC2015), p. 142 (2015)

    Google Scholar 

  3. Asorey, H., Núñez, L., Suárez-Durán, M.: Preliminary results from the Latin American giant observatory space weather simulation chain. Space Weather 16(5), 461–475 (2018)

    Google Scholar 

  4. Becerra, L., Reisenegger, A., Valdivia, J.A., Gusakov, M.E.: Evolution of random initial magnetic fields in stably stratified and barotropic stars. Mon. Not. R. Astron. Soc. 511(1), 732–745 (2022). https://doi.org/10.1093/mnras/stac102

    Article  Google Scholar 

  5. Braithwaite, J., Nordlund, Å.: Stable magnetic fields in stellar interiors. Astron. Astrophys. 450(3), 1077–1095 (2006). https://doi.org/10.1051/0004-6361:20041980

    Article  Google Scholar 

  6. Fryxell, B., et al.: FLASH: an adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. Astrophys. J. Suppl. 131(1), 273–334 (2000). https://doi.org/10.1086/317361

  7. Heck, D., Knapp, J., Capdevielle, J.N., Schatz, G., Thouw, T.: CORSIKA: a Monte Carlo code to simulate extensive air showers (1998)

    Google Scholar 

  8. Jourde, K., et al.: Monitoring temporal opacity fluctuations of large structures with muon radiography: a calibration experiment using a water tower. Sci. Rep. 6(23054) (2016). https://doi.org/10.1038/srep23054

  9. Kneizys, F.X., Abreu, L.W., Anderson, G.P., Chetwynd, J.H., et al.: The MODTRAN 2/3 report and LOWTRAN 7 model. Tech. Rep. (1996). https://web.gps.caltech.edu/~vijay/pdf/modrept.pdf

  10. Mignone, A., et al.: PLUTO: a numerical code for computational astrophysics. Astrophys. J. Suppl. 170(1), 228–242 (2007). https://doi.org/10.1086/513316

  11. Pencil Code Collaboration, Brandenburg, A., et al.: The Pencil Code, a modular MPI code for partial differential equations and particles: multipurpose and multiuser-maintained. J. Open Source Softw. 6(58), 2807 (2021). https://doi.org/10.21105/joss.02807

  12. Price, D.J., et al.: Phantom: a smoothed particle hydrodynamics and magnetohydrodynamics code for astrophysics. Publ. Astron. Soc. Austral. 35, e031 (2018). https://doi.org/10.1017/pasa.2018.25

    Article  Google Scholar 

  13. Rubio-Montero, A.J., Pagán-Muñoz, R., Mayo-García, R., Pardo-Diaz, A., Sidelnik, I., Asorey, H.: The EOSC-synergy cloud services implementation for the Latin American giant observatory (LAGO). arXiv preprint arXiv:2111.11190 (2021)

  14. Sarmiento-Cano, C., et al.: The arti framework: cosmic rays atmospheric background simulations. Eur. Phys. J. C 82, 1019 (2022). https://doi.org/10.1140/epjc/s10052-022-10883-z

    Article  Google Scholar 

  15. Springel, V., Pakmor, R., Zier, O., Reinecke, M.: Simulating cosmic structure formation with the GADGET-4 code. Mon. Not. R. Astron. Soc. 506(2), 2871–2949 (2021). https://doi.org/10.1093/mnras/stab1855

    Article  Google Scholar 

  16. Teyssier, R.: Cosmological hydrodynamics with adaptive mesh refinement. A new high resolution code called RAMSES. Astron. Astrophys. 385, 337–364 (2002). https://doi.org/10.1051/0004-6361:20011817

  17. Usoskin, I.G., et al.: Forbush decreases of cosmic rays: energy dependence of the recovery phase. J. Geophys. Res.: Space Phys. 113(A7) (2008). https://doi.org/10.1029/2007JA012955

  18. Wilkinson, M.D., et al.: The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3(1), 160018 (2016). https://doi.org/10.1038/sdata.2016.18

Download references

Acknowledgement

L. M. B is supported by the Vicerrectoría de Investigación y Extensión - Universidad Industrial de Santander Postdoctoral Fellowship Programme No. 2023000359. MINCIENCIAS has partially founded this work under project 82242 of call 890 of 2020, managed through the ICETEX contract 2022-0718. The computations presented in this paper were performed on the Hypatia cluster at the Universidad de los Andes and the Guane cluster at the Universidad Industrial de Santander, both located in Colombia. These HPC clusters were accessed through the LaRedCCA initiative of the National Academic Network of Advanced Technology, RENATA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Becerra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Becerra, L.M., Sarmiento-Cano, C., Martínez-Méndez, A., Dominguez, Y., Núñez, L.A. (2024). High-Performance Computing for Astrophysical Simulations and Astroparticle Observations. In: Barrios H., C.J., Rizzi, S., Meneses, E., Mocskos, E., Monsalve Diaz, J.M., Montoya, J. (eds) High Performance Computing. CARLA 2023. Communications in Computer and Information Science, vol 1887. Springer, Cham. https://doi.org/10.1007/978-3-031-52186-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52186-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52185-0

  • Online ISBN: 978-3-031-52186-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics