Skip to main content

Provenance-Based Dynamic Fine-Tuning of Cross-Silo Federated Learning

  • Conference paper
  • First Online:
High Performance Computing (CARLA 2023)

Abstract

Federated Learning (FL) is a distributed technique that allows multiple users to train models collaboratively without accessing private and sensitive data. Iteratively, each user trains a “local” model in a specific machine consuming private data and then sends the model updates to a server for their fusion into a centralized one. Although FL represents a step forward, the training duration in each iteration directly depends on the several configurations set, e.g., hyperparameters. Analyzing hyperparameters during the FL workflow allows for dynamic fine-tuning that can improve the performance of FL regarding training time and quality of results. However, due to its exploratory nature, the user may lose track of which configurations have been used to train the model with the best accuracy if the choices are not correctly registered. Provenance is the natural choice to represent data derivation traces to help hyperparameters fine-tuning by providing a global data-oriented picture of the FL workflow. Yet, the existing FL frameworks do not provide dynamic fine-tuning nor support provenance capturing. Therefore, this paper introduces an FL framework named Flower-PROV that uses provenance data for tracking configurations and evaluation metrics during the FL execution to allow for dynamic fine-tuning of hyperparameters, thus saving training time. We show a use case with Cross-Silo FL where Flower-PROV dynamic fine-tuning reduced the FL training time up to 94.24% when compared with the fine-tuning using grid-search.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    dataset-splitter - https://github.com/alan-lira/dataset-splitter.

References

  1. Bandara, E., Shetty, S., Rahman, A., Mukkamala, R., Zhao, J., Liang, X.: Bassa-ML – a blockchain and model card integrated federated learning provenance platform. In: IEEE 19th Annual Consumer Communications and Networking Conference (CCNC), pp. 753–759 (2022)

    Google Scholar 

  2. Beutel, D.J., et al.: Flower: a friendly federated learning research framework. arXiv (2020)

    Google Scholar 

  3. Fernandes, E., Moro, S., Cortez, P.: Data science, machine learning and big data in digital journalism: a survey of state-of-the-art, challenges and opportunities. Expert Syst. Appl. 221, 119795 (2023)

    Article  Google Scholar 

  4. Freire, J., Koop, D., Santos, E., Silva, C.T.: Provenance for computational tasks: a survey. Comput. Sci. Eng. 10(3), 11–21 (2008)

    Article  Google Scholar 

  5. Gharibi, G., Walunj, V., Nekadi, R., Marri, R., Lee, Y.: Automated end-to-end management of the modeling lifecycle in deep learning. Empir. Softw. Eng. 26, 1–33 (2021)

    Article  Google Scholar 

  6. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    Google Scholar 

  7. Groth, P., Moreau, L.: W3C PROV - an overview of the prov family of documents (2013). https://www.w3.org/TR/prov-overview/

  8. Kamm, S., Veekati, S.S., Müller, T., Jazdi, N., Weyrich, M.: A survey on machine learning based analysis of heterogeneous data in industrial automation. Comput. Ind. 149, 103930 (2023)

    Article  Google Scholar 

  9. Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical report. University of Toronto (2009)

    Google Scholar 

  10. Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning: challenges, methods, and future directions. IEEE Sig. Process. Mag. 37(3), 50–60 (2020)

    Article  Google Scholar 

  11. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. In: Proceedings of Machine Learning and Systems (MLSys). mlsys.org (2020)

    Google Scholar 

  12. Lourenço, R., Freire, J., Simon, E., Weber, G., Shasha, D.E.: BugDoc. VLDB J. 32(1), 75–101 (2023)

    Article  Google Scholar 

  13. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Proceedings of the 20th (AISTATS), vol. 54, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  14. Nair, D.G., Aswartha Narayana, C.V., Jaideep Reddy, K., Nair, J.J.: Exploring SVM for federated machine learning applications. In: Rout, R.R., Ghosh, S.K., Jana, P.K., Tripathy, A.K., Sahoo, J.P., Li, K.C. (eds.) Advances in Distributed Computing and Machine Learning. LNNS, vol. 427, pp. 295–305. Springer, Singapore (2022). https://doi.org/10.1007/978-981-19-1018-0_25

    Chapter  Google Scholar 

  15. Nogay, H.S., Adeli, H.: Diagnostic of autism spectrum disorder based on structural brain MRI images using, grid search optimization, and convolutional neural networks. Biomed. Sig. Process. Control. 79(Part), 104234 (2023)

    Google Scholar 

  16. de Oliveira, D.C.M., Liu, J., Pacitti, E.: Data-Intensive Workflow Management: For Clouds and Data-Intensive and Scalable Computing Environments. Synthesis Lectures on Data Management. Morgan & Claypool Publishers, San Rafael (2019)

    Google Scholar 

  17. Parmar, J., Chouhan, S.S., Raychoudhury, V., Rathore, S.S.: Open-world machine learning: applications, challenges, and opportunities. ACM Comput. Surv. 55(10), 205:1–205:37 (2023)

    Google Scholar 

  18. Peregrina, J.A., Ortiz, G., Zirpins, C.: Towards a metadata management system for provenance, reproducibility and accountability in federated machine learning. In: Zirpins, C., et al. (eds.) ESOCC 2022. CCIS, vol. 1617, pp. 5–18. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-23298-5_1

    Chapter  Google Scholar 

  19. Pina, D.B., Chapman, A., de Oliveira, D., Mattoso, M.: Deep learning provenance data integration: a practical approach. In: Ding, Y., Tang, J., Sequeda, J.F., Aroyo, L., Castillo, C., Houben, G. (eds.) Companion Proceedings of the ACM Web Conference 2023. WWW 2023, Austin, TX, USA, 30 April 2023–4 May 2023, pp. 1542–1550. ACM (2023)

    Google Scholar 

  20. Pina, D., Kunstmann, L., de Oliveira, D., Valduriez, P., Mattoso, M.: Provenance supporting hyperparameter analysis in deep neural networks. In: Glavic, B., Braganholo, V., Koop, D. (eds.) IPAW 2020-2021. LNCS, vol. 12839, pp. 20–38. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80960-7_2

    Chapter  Google Scholar 

  21. Pina, D., et al.: Capturing provenance from deep learning applications using Keras-Prov and Colab: a practical approach. J. Inf. Data Manag. 13(5) (2022)

    Google Scholar 

  22. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  23. Schelter, S., Boese, J.H., Kirschnick, J., Klein, T., Seufert, S.: Automatically tracking metadata and provenance of machine learning experiments. In: Machine Learning Systems Workshop at NIPS (2017)

    Google Scholar 

  24. da Silva, F., Casanova, R., et al.: Workflows community summit: bringing the scientific workflows research community together (2021)

    Google Scholar 

  25. Silva, V., et al.: Dfanalyzer: runtime dataflow analysis tool for computational science and engineering applications. SoftwareX 12, 100592 (2020)

    Article  Google Scholar 

  26. Vartak, M., Madden, S.: MODELDB: opportunities and challenges in managing machine learning models. IEEE Data Eng. Bull. 41(4), 16–25 (2018)

    Google Scholar 

  27. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. 10(2) (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel de Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lopes, C., Nunes, A.L., Boeres, C., Drummond, L.M.A., de Oliveira, D. (2024). Provenance-Based Dynamic Fine-Tuning of Cross-Silo Federated Learning. In: Barrios H., C.J., Rizzi, S., Meneses, E., Mocskos, E., Monsalve Diaz, J.M., Montoya, J. (eds) High Performance Computing. CARLA 2023. Communications in Computer and Information Science, vol 1887. Springer, Cham. https://doi.org/10.1007/978-3-031-52186-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52186-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52185-0

  • Online ISBN: 978-3-031-52186-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics