Abstract
Wildfires are a latent problem worldwide that every year burns thousands of hectares, negatively impacting the environment. To mitigate the damage, there is software to support wildfire analysis. Many of these computational tools are based on different mathematical models, each with its own advantages and disadvantages. Unfortunately, only a few of the software are open source. This work aims to develop an open-source GPU implementation of a mathematical model for the spread of wildfires using CUDA. The algorithm is based on the Method of Lines, allowing it to work with a system of partial differential equations as a dynamical system. We present the advantages of a GPU versus C and an OpenMP multi-threaded CPU implementation for computing the outcome of several scenarios.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alexandridis, A., Vakalis, D., Siettos, C., Bafas, G.: A cellular automata model for forest fire spread prediction: the case of the wildfire that swept through Spetses Island in 1990. Appl. Math. Comput. 204(1), 191–201 (2008). https://doi.org/10.1016/j.amc.2008.06.046
Almeida, R.M., Macau, E.E.N.: Stochastic cellular automata model for wildland fire spread dynamics. J. Phys: Conf. Ser. 285(1), 12038 (2011). https://doi.org/10.1088/1742-6596/285/1/012038
Arganaraz, J., Lighezzolo, A., Clemoveki, K., Bridera, D., Scavuzzo, J., Bellis, L.: Operational meteo fire risk system based on space information for Chaco Serrano. IEEE Lat. Am. Trans. 16(3), 975–980 (2018). https://doi.org/10.1109/TLA.2018.8358681
Asensio, M.I., Ferragut, L.: On a wildland fire model with radiation. Int. J. Numer. Meth. Eng. 54(1), 137–157 (2002). https://doi.org/10.1002/nme.420
Carrillo, C., Margalef, T., Espinosa, A., Cortés, A.: Accelerating wild fire simulator using GPU. In: Rodrigues, J.M.F., et al. (eds.) ICCS 2019. LNCS, vol. 11540, pp. 521–527. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22750-0_46
Carrillo, C., Cortés, A., Margalef, T., Espinosa, A., Cencerrado, A.: Applying GPU parallel technology to accelerate FARSITE forest fire simulator. In: Advances in Forest Fire Research, pp. 913–921 (2018). https://doi.org/10.14195/978-989-26-16-506_100
Chopard, B., Droz, M.: Cellular automata model for the diffusion equation. J. Stat. Phys. 64(3), 859–892 (1991). https://doi.org/10.1007/BF01048321
CONAF: Incendios Forestales en Chile (2021). http://www.conaf.cl/incendios-forestales/incendios-forestales-en-chile/
Denham, M., Laneri, K.: Using efficient parallelization in graphic processing units to parameterize stochastic fire propagation models. J. Comput. Sci. 25, 76–88 (2018). https://doi.org/10.1016/J.JOCS.2018.02.007
Denham, M.M., Waidelich, S., Laneri, K.: Visualization and modeling of forest fire propagation in Patagonia. Environ. Model. Softw. 158, 105526 (2022). https://doi.org/10.1016/J.ENVSOFT.2022.105526
D’Ambrosio, D., Gregorio, S.D., Filippone, G., Rongo, R., Spataro, W., Trunfio, G.A.: A Multi-GPU approach to fast wildfire hazard mapping. Adv. Intell. Syst. Comput. 256, 183–195 (2014). https://doi.org/10.1007/978-3-319-03581-9_13
Eberle, S.: Modeling and simulation of forest fire spreading. In: Eulogio, P.I., Guardiola-Albert, Carolina, Javier, H., Luis, M.M., José, D.J., Antonio, V.G.J. (eds.) Mathematics of Planet Earth, pp. 811–814. Springer, Berlin Heidelberg, Berlin, Heidelberg (2014). https://doi.org/10.1007/978-3-642-32408-6_175
Eberle, S., Freeden, W., Matthes, U.: Forest fire spreading. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, pp. 1349–1385. Springer, Berlin Heidelberg, Berlin, Heidelberg (2015). https://doi.org/10.1007/978-3-642-54551-1_70
Fernandez-Anez, N., Christensen, K., Rein, G.: Two-dimensional model of smouldering combustion using multi-layer cellular automaton: the role of ignition location and direction of airflow. Fire Saf. J. 91, 243–251 (2017). https://doi.org/10.1016/J.FIRESAF.2017.03.009
Ferragut, L., Asensio, M.I., Cascón, J.M., Prieto, D.: A wildland fire physical model well suited to data assimilation. Pure Appl. Geophys. 172(1), 121–139 (2015). https://doi.org/10.1007/s00024-014-0893-9
Ferragut, L., Asensio, M.I., Monedero, S.: Modelling radiation and moisture content in fire spread. Commun. Numer. Meth. Eng. 23, 819–833 (2006). https://doi.org/10.1002/cnm.927
Ferragut, L., Asensio, M.I., Monedero, S.: A numerical method for solving convection-reaction-diffusion multivalued equations in fire spread modelling. Adv. Eng. Softw. 38(6), 366–371 (2007). https://doi.org/10.1016/J.ADVENGSOFT.2006.09.007
Ghisu, T., Arca, B., Pellizzaro, G., Duce, P.: An improved cellular automata for wildfire spread. Procedia Comput. Sci. 51, 2287–2296 (2015). https://doi.org/10.1016/J.PROCS.2015.05.388
Hansen, P.B.: Parallel cellular automata: a model program for computational science. Concurrency Pract. Experience 5(5), 425–448 (1993). https://doi.org/10.1002/cpe.4330050504
Harris, M.: Introducing parallel forall. https://developer.nvidia.com/blog/?p=8. Accessed 3 Oct 2023
Karafyllidis, I., Thanailakis, A.: A model for predicting forest fire spreading using cellular automata. Ecol. Model. 99(1), 87–97 (1997). https://doi.org/10.1016/S0304-3800(96)01942-4
Mandel, J., et al.: A wildland fire model with data assimilation. Math. Comput. Simul. 79(3), 584–606 (2008). https://doi.org/10.1016/j.matcom.2008.03.015
Mell, W., Jenkins, M.A., Gould, J., Cheney, P.: A physics-based approach to modelling grassland fires. Int. J. Wildland Fire 16(1), 1–22 (2007). https://doi.org/10.1071/WF06002
Montenegro, R., Plaza, A., Ferragut, L., Asensio, M.I.: Application of a nonlinear evolution model to fire propagation. Nonlinear Anal. Theory Methods Appl. 30(5), 2873–2882 (1997). https://doi.org/10.1016/S0362-546X(97)00341-6
Ntinas, V.G., Moutafis, B.E., Trunfio, G.A., Sirakoulis, G.C.: GPU and FPGA parallelization of fuzzy cellular automata for the simulation of wildfire spreading. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9574, pp. 560–569. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32152-3_52
NVIDIA: CUDA C++ Programming Guide. https://docs.nvidia.com/cuda/cuda-c-programming-guide/. Accessed 3 Oct 2023
Oliphant, T.E.: Python for scientific computing. Comput. Sci. Eng. 9(3), 10–20 (2007). https://doi.org/10.1109/MCSE.2007.58
Preisler, H.K., Ager, A.A.: Forest-Fire Models. Encycl. Environmetrics (2013). https://doi.org/10.1002/9780470057339.vaf010.pub2
San Martín, D., Torres, C.E.: Exploring a spectral numerical algorithm for solving a wildfire mathematical model. In: 2019 38th International Conference of the Chilean Computer Science Society (SCCC), pp. 1–7 (2019). https://doi.org/10.1109/SCCC49216.2019.8966412
San Martín, D., Torres, C.E.: Ngen-Kütral: Toward an open source framework for chilean wildfire spreading. In: 2018 37th International Conference of the Chilean Computer Science Society (SCCC), pp. 1–8 (2018). https://doi.org/10.1109/SCCC.2018.8705159
San Martin, D., Torres, C.: Open source framework for chilean wildfire spreading (2019). https://github.com/dsanmartin/ngen-kutral. Accessed 1 Mar 2019
San Martin, D., Torres, C.: Open source framework for Chilean wildfire spreading: GPU implementation (2019). https://github.com/dsanmartin/ngen-kutral-gpu. Accessed 1 Mar 2019
San Martin, D., Torres, C.E.: 2D simplified wildfire spreading model in Python: from NumPy to CuPy. CLEI Electron. J. 26, 5:1-5:18 (2023). https://doi.org/10.19153/CLEIEJ.26.1.5
Smith, J., Barfed, L., Dasclu, S.M., Harris, F.C.: Highly parallel implementation of forest fire propagation models on the GPU. In: 2016 International Conference on High Performance Computing and Simulation, HPCS 2016, pp. 917–924 (2016). https://doi.org/10.1109/HPCSIM.2016.7568432
Sousa, F.A., dos Reis, R.J., Pereira, J.C.: Simulation of surface fire fronts using fireLib and GPUs. Environ. Model. Softw. 38, 167–177 (2012). https://doi.org/10.1016/J.ENVSOFT.2012.06.006
Trefethen, L.N.: Spectral Methods in MATLAB. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2000). https://doi.org/10.1137/1.9780898719598
Wu, R., et al.: vFirelib: a GPU-based fire simulation and visualization tool. SoftwareX 23, 101411 (2023). https://doi.org/10.1016/J.SOFTX.2023.101411
Zambrano, M., Pérez, I., Carvajal, F., Esteve, M., Palau, C.: Command and control information systems applied to large forest fires response. IEEE Lat. Am. Trans. 15(9), 1735–1741 (2017). https://doi.org/10.1109/TLA.2017.8015080
Acknowledgment
This work was partially supported by ANID-Subdirección de Capital Humano/Doctorado Nacional/2019-21191017, ANID PIA/APOYO AFB220004 Centro Científico Tecnológico de Valparaíso - CCTVal, and Programa de Iniciación a la Investigación Científica (PIIC) from Dirección de Postgrado y Programas, Universidad Técnica Federico Santa María, Chile.
Powered@NLHPC: This research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
San Martin, D., Torres, C.E. (2024). A GPU Numerical Implementation of a 2D Simplified Wildfire Spreading Model. In: Barrios H., C.J., Rizzi, S., Meneses, E., Mocskos, E., Monsalve Diaz, J.M., Montoya, J. (eds) High Performance Computing. CARLA 2023. Communications in Computer and Information Science, vol 1887. Springer, Cham. https://doi.org/10.1007/978-3-031-52186-7_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-52186-7_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-52185-0
Online ISBN: 978-3-031-52186-7
eBook Packages: Computer ScienceComputer Science (R0)