Skip to main content

Open Packing in H-free Graphs and Subclasses of Split Graphs

  • Conference paper
  • First Online:
Algorithms and Discrete Applied Mathematics (CALDAM 2024)

Abstract

Given a graph G(VE), a vertex subset S of G is called an open packing in G if no pair of distinct vertices in S have a common neighbour in G. The size of a largest open packing in G is called the open packing number of G and is denoted by \(\rho ^o(G)\). It is interesting to note that the open packing number is a lower bound for the total domination number in graphs with no isolated vertices [Henning and Slater, 1999]. Given a graph G and a positive integer k, Open Packing problem tests whether G has an open packing of size at least k.

It is known that Open Packing is NP-complete on split graphs (i.e., the class of \(\{2K_2,C_4,C_5\}\)-free graphs) [Ramos et al. 2014]. In this work, we complete the study on the complexity of Open Packing on H-free graphs for every graph H on at least three vertices by proving that Open Packing is (i) NP-complete on \(K_{1,3}\)-free graphs and (ii) polynomial-time solvable on \((P_4\cup rK_1)\)-free graphs for every \(r\ge 1\). Further, we prove that Open Packing is (i) NP-complete on \(K_{1,4}\)-free split graphs and (ii) polynomial-time solvable on \(K_{1,3}\)-free split graphs. We prove a similar dichotomy result on split graphs with degree restrictions on the vertices in the independent set of the clique-independent set partition of the split graph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Corneil, D.G., Perl, Y.: Clustering and domination in perfect graphs. Discret. Appl. Math. 9(1), 27–39 (1984). https://doi.org/10.1016/0166-218X(84)90088-X

    Article  MathSciNet  Google Scholar 

  2. Cygan, M., et al.: Parameterized Algorithms, 1st edn. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  Google Scholar 

  3. Damaschke, P., Muller, H., Kratsch, D.: Domination in convex and chordal bipartite graphs. Inf. Process. Lett. 31, 231–236 (1990). https://doi.org/10.1016/0020-0190(90)90147-P

    Article  MathSciNet  Google Scholar 

  4. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II: on completeness for W[1]. Theoret. Comput. Sci. 141(1), 109–131 (1995). https://doi.org/10.1016/0304-3975(94)00097-3

    Article  MathSciNet  Google Scholar 

  5. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer, London (2016). https://doi.org/10.1007/978-1-4471-5559-1

    Book  Google Scholar 

  6. Håstard, J.: Clique is hard to approximate within \(n^{1-\epsilon }\). Acta Math. 182, 105–142 (1999). https://doi.org/10.1007/BF02392825

    Article  MathSciNet  Google Scholar 

  7. Haynes, T.W., Hedetniemi, S., Slater, P.: Fundamentals of Domination in Graphs, 1st edn. CRC Press, Boca Raton (1998). https://doi.org/10.1201/9781482246582

    Book  Google Scholar 

  8. Henning, M.A.: Packing in trees. Discret. Math. 186(1), 145–155 (1998). https://doi.org/10.1016/S0012-365X(97)00228-8

    Article  MathSciNet  Google Scholar 

  9. Henning, M.A., Slater, P.J.: Open packing in graphs. J. Comb. Math. Comb. Comput. 29, 3–16 (1999)

    MathSciNet  Google Scholar 

  10. Henning, M.A., Yeo, A.: Total Domination in Graphs. Springer, New York (2015). https://doi.org/10.1007/978-1-4614-6525-6

    Book  Google Scholar 

  11. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations, pp. 85–103. Springer, Cham (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

    Chapter  Google Scholar 

  12. McRae, A.A.: Generalizing NP-completeness proofs for bipartite graphs and chordal graphs. Ph.D. thesis, Clemson University, USA (1995)

    Google Scholar 

  13. Rall, D.F.: Total domination in categorical products of graphs. Discussiones Mathematicae Graph Theory 25, 35–44 (2005). https://doi.org/10.7151/dmgt.1257

    Article  MathSciNet  Google Scholar 

  14. Ramos, I., Santos, V.F., Szwarcfiter, J.L.: Complexity aspects of the computation of the rank of a graph. Discrete Math. Theor. Comput. Sci. 16 (2014). https://doi.org/10.46298/dmtcs.2075

  15. Renjith, P., Sadagopan, N.: The steiner tree in \( {K}_{1, r}\)-free split graphs-a dichotomy. Discret. Appl. Math. 280, 246–255 (2020). https://doi.org/10.1016/j.dam.2018.05.050

    Article  Google Scholar 

  16. Shalu, M.A., Kirubakaran, V.K.: Total domination number and its lower bound in some subclasses of bipartite graphs. Manusript-UnderReview (2023)

    Google Scholar 

  17. Shalu, M.A., Vijayakumar, S., Sandhya, T.P.: A lower bound of the cd-chromatic number and its complexity. In: Gaur, D., Narayanaswamy, N.S. (eds.) CALDAM 2017. LNCS, vol. 10156, pp. 344–355. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53007-9_30

    Chapter  Google Scholar 

  18. West, D.B.: Introduction to Graph Theory, 2nd edn. Pearson, London (2018)

    Google Scholar 

  19. White, K., Farber, M., Pulleyblank, W.: Steiner trees, connected domination and strongly chordal graphs. Networks 15(1), 109–124 (1985). https://doi.org/10.1002/net.3230150109

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Kirubakaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shalu, M.A., Kirubakaran, V.K. (2024). Open Packing in H-free Graphs and Subclasses of Split Graphs. In: Kalyanasundaram, S., Maheshwari, A. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2024. Lecture Notes in Computer Science, vol 14508. Springer, Cham. https://doi.org/10.1007/978-3-031-52213-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52213-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52212-3

  • Online ISBN: 978-3-031-52213-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics