Skip to main content

Automated Quality-Controlled Left Heart Segmentation from 2D Echocardiography

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers (STACOM 2023)

Abstract

Segmentation of 2D echocardiography (2DE) images is an important prerequisite for quantifying cardiac function. Although deep learning can automate analysis, variability in image quality and limitations in model generalisability can result in inaccurate segmentations. We present an automated quality control (QC) methodology to identify invalid segmentations, and propose post-processing techniques to automatically correct erroneous segmentations. A workflow was developed to utilise a deep learning model, trained using the CAMUS dataset, for segmenting all frames within apical two-chamber and four-chamber 2DE images from an independent dataset containing 91 participants (28 females; 51 healthy controls and 40 patients with mixed cardiac pathologies). Single- and multi-frame QC and post-processing techniques were applied, and subsequently validated against manual QC in a sample of 50 randomly selected participants. Cardiac indices derived from the automated segmentations using 2DE were compared to reference values obtained through expert manual analysis on the same subjects. Single-frame QC improved the proportion of usable frames from 76% to 96%. Multi-frame QC indicated failures in 53% of the images, and while the resulting specificity was 96%, correction only achieved a sensitivity of 42% with respect to manual assessment. The exclusion of the rejected images resulted in improvements in the reliability between predicted and manual measurements. These results demonstrated that applying automated QC to deep learning segmentation methods can enhance the reliability of 2DE segmentations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.creatis.insa-lyon.fr/Challenge/camus/results.html

References

  1. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time series. In: KDD Workshop. vol. 10, pp. 359–370. Seattle, WA, USA (1994)

    Google Scholar 

  2. Folland, E.D., Parisi, A.F., Moynihan, P.F., Jones, D.R., Feldman, C.L., Tow, D.E.: Assessment of left ventricular ejection fraction and volumes by real-time, two-dimensional echocardiography. A comparison of cineangiographiy and radionuclide techniques. Circulation 60(4), 760–766 (1979). https://doi.org/10.1161/01.cir.60.4.760

  3. Hann, E., Gonzales, R.A., Popescu, I.A., Zhang, Q., Ferreira, V.M., Piechnik, S.K.: Ensemble of deep convolutional neural networks with Monte Carlo dropout sampling for automated image segmentation quality control and robust deep learning using small datasets. In: Papież, B.W., Yaqub, M., Jiao, J., Namburete, A.I.L., Noble, J.A. (eds.) MIUA 2021. LNCS, vol. 12722, pp. 280–293. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80432-9_22

    Chapter  Google Scholar 

  4. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021). https://doi.org/10.1038/s41592-020-01008-z

    Article  Google Scholar 

  5. Keshavan, A., Datta, E., M. McDonough, I., Madan, C.R., Jordan, K., Henry, R.G.: Mindcontrol: a web application for brain segmentation quality control. NeuroImage 170, 365–372 (2018). https://doi.org/10.1016/j.neuroimage.2017.03.055

  6. Koo, T.K., Li, M.Y.: A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 15(2), 155–163 (2016). https://doi.org/10.1016/j.jcm.2016.02.012

    Article  Google Scholar 

  7. Leclerc, S., et al.: Deep learning for segmentation using an open large-scale dataset in 2D echocardiography. IEEE Trans. Med. Imaging 38(9), 2198–2210 (2019). https://doi.org/10.1109/TMI.2019.2900516

  8. Leclerc, S., et al.: Deep learning segmentation in 2D echocardiography using the CAMUS dataset: automatic assessment of the anatomical shape validity. In: International Conference on Medical Imaging with Deep Learning - Extended Abstract Track, London, United Kingdom (2019)

    Google Scholar 

  9. Meyers, B., Brindise, M., Kutty, S., Vlachos, P.: A method for direct estimation of left ventricular global longitudinal strain rate from echocardiograms. Sci. Rep. 12(1), 4008 (2022). https://doi.org/10.1038/s41598-022-06878-1

  10. Painchaud, N., Skandarani, Y., Judge, T., Bernard, O., Lalande, A., Jodoin, P.M.: Cardiac segmentation with strong anatomical guarantees. IEEE Trans. Med. Imaging 39(11), 3703–3713 (2020). https://doi.org/10.1109/TMI.2020.3003240

    Article  Google Scholar 

  11. Robinson, R., et al.: Automated quality control in image segmentation: application to the UK Biobank cardiovascular magnetic resonance imaging study. J. Cardiovasc Magn. Reson. 21(1), 18 (2019). https://doi.org/10.1186/s12968-019-0523-x

  12. Robinson, R., et al.: Real-time prediction of segmentation quality. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 578–585. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_66

    Chapter  Google Scholar 

  13. Roy, A.G., Conjeti, S., Navab, N., Wachinger, C.: Inherent brain segmentation quality control from fully ConvNet Monte Carlo sampling. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 664–672. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_75

    Chapter  Google Scholar 

  14. Ruijsink, B., et al.: Fully automated, quality-controlled cardiac analysis from CMR. JACC Cardiovasc. Imaging 13(3), 684–695 (2020). https://doi.org/10.1016/j.jcmg.2019.05.030

    Article  Google Scholar 

  15. Smiseth, O.A., Donal, E., Penicka, M., Sletten, O.J.: How to measure left ventricular myocardial work by pressure-strain loops. Eur. Heart J. Cardiovasc. Imaging 22(3), 259–261 (2020). https://doi.org/10.1093/ehjci/jeaa301

  16. Thrall, J.H., Li, X., Li, Q., Cruz, C., Do, S., Dreyer, K., Brink, J.: Artificial intelligence and machine learning in radiology: opportunities, challenges, pitfalls, and criteria for success. J. Am. Coll. Radiol. 15(3, Part B), 504–508 (2018). https://doi.org/10.1016/j.jacr.2017.12.026

  17. Vallat, R.: Pingouin: statistics in Python. J. Open Source Softw. 3(31), 1026 (2018). https://doi.org/10.21105/joss.01026

  18. Van Rossum, G., Drake, F.L.: Python 3 Reference Manual. CreateSpace, Scotts Valley, CA (2009)

    Google Scholar 

  19. Virtanen, P., et al.: SciPy 1.0 Contributors: SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020). https://doi.org/10.1038/s41592-019-0686-2

  20. Zhang, X., et al.: Generalizability and quality control of deep learning-based 2D echocardiography segmentation models in a large clinical dataset. Int. J. Cardiovasc. Imaging (2022). https://doi.org/10.1007/s10554-022-02554-7

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the participants of the CARDIOHANCE study for volunteering their time, and the staff at the Centre for Advanced MRI at the University of Auckland for their expertise and assistance with the imaging components of this study.

Funding

This study was funded by the Health Research Council of New Zealand (programme grant 17/608).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debbie Zhao .

Editor information

Editors and Affiliations

Ethics declarations

Our code is publicly available on GitHub: https://github.com/bgeven/AQC-left-heart-segmentation

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Geven, B.W.M. et al. (2024). Automated Quality-Controlled Left Heart Segmentation from 2D Echocardiography. In: Camara, O., et al. Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers. STACOM 2023. Lecture Notes in Computer Science, vol 14507. Springer, Cham. https://doi.org/10.1007/978-3-031-52448-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52448-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52447-9

  • Online ISBN: 978-3-031-52448-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics