Skip to main content

Inherent Atrial Fibrillation Vulnerability in the Appendages Exacerbated in Heart Failure

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers (STACOM 2023)

Abstract

Atrial fibrillation (AF) frequently accompanies heart failure (HF), however, the causal mechanism underlying their atrial electrophysiological substrates remains unclear. In the present study, we evaluated the effects of abnormal anatomical characteristics on the electrophysiology of rabbit atria with HF. Micro-CT images from adult New Zealand white rabbit hearts (n = 4 HF and n = 4 control) were acquired. Novel imaging methods were used to reconstruct atrial myofiber architecture at a high resolution of 21 µm3/voxel for quantitative analysis of the structural remodelling. Effects of this structural remodelling on the vulnerability to atrial re-entrant waves was analysed using computer simulation. Reconstructed data showed increased chamber lumen and an uneven reduction in wall thickness across the appendages in HF. Anatomically, myofibers in epicardial walls of the appendages were identified to be circumferential, perpendicular to the pectinate muscles (PMs). The relative ratio of average PM thickness to the atrial wall was larger in HF vs. control (right atrial appendages: 3.5 versus 2.7 and left atrial appendages: 4.4 versus 3.7, p < 0.001). Furthermore, the uncoupled myofiber orientation between the PMs and atrial wall was verified using confocal microscopy at a spatial resolution of 0.2 µm3. Computer simulations suggested (1) uncoupled myofiber orientation of the PMs and the atrial wall may increase the vulnerability to AF; and (2) decreased atrial thickness and dilated chambers may amplify the unstable substrates leading to re-entry formation in HF. Our ex-vivo to in-silico results demonstrate that uncoupled myofiber orientation in the atria is an important component of the structural remodelling, facilitating the development and maintenance of AF in HF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mulder, B.A., Rienstra, M., Van Gelder, I.C., et al.: Update on management of atrial fibrillation in heart failure: a focus on ablation. BMJ J. Hear. 108(6), 422–428 (2022)

    Google Scholar 

  2. Carlisle, M.A., Fudim, M., DeVore, A.D., et al.: Heart failure and atrial fibrillation, like fire and fury. JACC Heart. Fail. 7(6), 447–456 (2019)

    Article  Google Scholar 

  3. Smit, M.D., Moes, M.L., Maass, A.H., et al.: The importance of whether atrial fibrillation or heart failure develops first. Eur. J. Heart Fail. 14(9), 1030–1040 (2014)

    Google Scholar 

  4. Deedwania, P.C., Lardizabal, J.A.: Atrial fibrillation in heart failure: a comprehensive review. Am. J. Med. 123(3), 198–204 (2010)

    Article  Google Scholar 

  5. Nerheim, P., Birger-Botkin, S., Piracha, L., et al.: Heart failure and sudden death in patients with tachycardia-induced cardiomyopathy and recurrent tachycardia. Circulation 110(3), 247–252 (2004)

    Article  Google Scholar 

  6. Delgado, V., Bax, J.J.: Atrial functional mitral regurgitation: from mitral annulus dilatation to insufficient leaflet remodeling. Circ. Cardiovasc. Imaging, 10(3), 6239 (2017)

    Google Scholar 

  7. Gopinathannair, R., Chen, L., Chung, M., et al.: Managing atrial fibrillation in patients with heart failure and reduced ejection fraction a scientific statement from the American heart association. Circ. Arrhythmia Electrophysiol. 14, 688–705 (2021)

    Google Scholar 

  8. Ikoma, T., Obokata, M., Okada, K., et al.: Impact of right atrial remodeling in heart failure with preserved ejection fraction. J. Card. Fail. 27(5), 577–584 (2021)

    Article  Google Scholar 

  9. Lombardi, C.M., Zambelli, V., Botta, G., et al.: Postmortem micro-CT of small fetuses and hearts. Ultrasound Obstet. Gynecol. 44(5), 600–609 (2014)

    Article  Google Scholar 

  10. Hutchinson, J.C., Arthurs, O., Ashworth, M., et al.: Clinical utility of postmortem microcomputed tomography of the fetal heart: diagnostic imaging vs macroscopic dissection. Ultrasound Obstet. Gynecol. 47(1), 58–64 (2016)

    Article  Google Scholar 

  11. Stephenson, R.S., Jones, C.B., Guerrero, R., et al.: High-Resolution contrast-enhanced micro-CT to identify the cardiac conduction system in congenitally malformed hearts: valuable insight from a hospital archive. JACC Cardiovasc. Imaging 11(11), 1706–1712 (2018)

    Article  Google Scholar 

  12. Simcock, I.C., Hutchinson, J., Shelmerdine, S., et al.: Investigation of optimal sample preparation conditions with potassium triiodide and optimal imaging settings for microfocus computed tomography of excised cat hearts. Am. J. Vet. Res. 81(4), 326–333 (2020)

    Article  Google Scholar 

  13. Aslanidi, O.V., Nikolaidou, T., Zhao, J., et al.: Application of micro-computed tomography with iodine staining to cardiac imaging, segmentation, and computational model development. IEEE Trans. Med. Imaging 32(1), 8–17 (2013)

    Article  Google Scholar 

  14. Corno, A. F., Cai, X., Jones, C. B., et al.: Congestive heart failure: experimental model. Front. Pediatr. 1, 68060 (2013)

    Google Scholar 

  15. Agrawal, S., Ralugun, G., Ashton, J., et al.: Structural basis of atrial arrhythmogenesis in metabolic syndrome. In: Computing in Cardiology Conference, vol. 46, (2019)

    Google Scholar 

  16. Barbero, U., Ho, S.Y.: Anatomy of the atria : a road map to the left atrial appendage. Circ. Arrhy. Electro. 28(4), 347–354 (2017)

    Google Scholar 

  17. Ueda, A., McCarthy, K.P., Sánchez-Quintana, D., et al.: Right atrial appendage and vestibule: further anatomical insights with implications for invasive electrophysiology. Europace 15(5), 728–734 (2013)

    Article  Google Scholar 

  18. Ho, S.Y., Sánchez-Quintana, D.: The importance of atrial structure and fibers. Clin. Anatomists 22(1), 52–63 (2009)

    Article  Google Scholar 

  19. Weickert, J.: Anisotropic diffusion in image processing (1998). B.G. Teubner Stuttgart

    Google Scholar 

  20. Axelsson, M., Svensson, S.: 3D pore structure characterisation of paper. Pattern Anal. Appl. 13(2), 159–172 (2010)

    Article  MathSciNet  Google Scholar 

  21. Butters, T.D., Aslanidi, O.V., Zhao, J.: A novel computational sheep atria model for the study of atrial fibrillation. Interface Focus 3(2), 20120067 (2013)

    Article  Google Scholar 

  22. Seemann, G., Höper, C., Sachse, F.B., et al.: Heterogeneous three-dimensional anatomical and electrophysiological model of human atria. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 364(1843), 1465–1481 (2006)

    Google Scholar 

  23. Aslanidi, O.V., Colman, M., Stott, J., et al.: 3D virtual human atria: a computational platform for studying clinical atrial fibrillation. Prog. Biophys. Mol. Biol. 107(1), 156–168 (2011)

    Article  Google Scholar 

  24. Courtemanche, M., Ramirez, R.J., Nattel, S.: Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am. J. Physiol. Heart Circulatory Physiol. 275(1), 301–321 (1998)

    Article  Google Scholar 

  25. Shannon, T.R., Wang, F., Puglisi, J., et al.: A mathematical treatment of integrated Ca dynamics within the ventricular myocyte. Biophys. J. 87(5), 3351–3371 (2004)

    Article  Google Scholar 

  26. Gray, R.A., Pertsov, A.M., Jalife, J.: Incomplete reentry and epicardial breakthrough patterns during atrial fibrillation in the sheep heart. Circ. 94(10), 2649–2661 (1996)

    Article  Google Scholar 

  27. Zhao, J., Butters, T., Zhang, H., et al.: An image-based model of atrial muscular architecture: effects of structural anisotropy on electrical activation. Circ. Arrhy. Electro. 5(2), 361–370 (2012)

    Article  Google Scholar 

  28. Logantha, S., Cai, X., Yanni, J., et al.: Remodeling of the Purkinje network in congestive heart failure in the rabbit. Circ. Hear. Fail. 14(7), E007505 (2021)

    Google Scholar 

  29. Yu, H.T., Lee, J.S., Kim, T.H., et al.: Advanced left atrial remodeling and appendage contractile dysfunction in women than in men among the patients with atrial fibrillation: potential mechanism for stroke. J. Am. Heart Assoc. 5(7), e003361 (2016)

    Article  Google Scholar 

  30. Melenovsky, V., Hwang, S.J., Redfield, M.M., et al.: Left atrial remodeling and function in advanced heart failure with preserved or reduced ejection fraction. Circ. Heart Failure 8(2), 295–303 (2015)

    Article  Google Scholar 

  31. Beigel, R., Wunderlich, N., Ho, S., et al.: The left atrial appendage: anatomy, function, and noninvasive evaluation. JACC Cardiovasc. Imaging 7(12), 1251–1265 (2014)

    Article  Google Scholar 

  32. Siddiqui, A.U., Daimi, S., Gandhi, K., et al.: Crista terminalis, musculi pectinati, and taenia sagittalis: anatomical observations and applied significance. ISRN Anat. 2013, 1–6 (2013)

    Article  Google Scholar 

  33. Zhao, Q., Zhang, H., Tang, Y., et al.: Relationship between autonomic innervation in crista terminalis and atrial arrhythmia. J. Cardiovasc. Electro. 20(5), 551–557 (2009)

    Article  Google Scholar 

  34. Luo, M., Anderson, M.E.: Mechanisms of altered Ca2+ handling in heart failure. Circ. Res. 113(6), 690–708 (2013)

    Article  Google Scholar 

  35. Fong, S.P.T., Agrawal, S., Gong, M., et al.: Modulated calcium homeostasis and release events under atrial fibrillation and its risk factors: A Meta-Analysis. Front. Cardiovasc. Med. 702 (2021)

    Google Scholar 

  36. Mizumaki, K., Fujiki, A., Nagasawa, H., et al.: Relation between transverse conduction capability and the anatomy of the crista terminalis in patients with atrial flutter and atrial fibrillation: analysis by intracardiac echocardiography. Circulation 66(12), 1113–1118 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jichao Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agrawal, S. et al. (2024). Inherent Atrial Fibrillation Vulnerability in the Appendages Exacerbated in Heart Failure. In: Camara, O., et al. Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers. STACOM 2023. Lecture Notes in Computer Science, vol 14507. Springer, Cham. https://doi.org/10.1007/978-3-031-52448-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52448-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52447-9

  • Online ISBN: 978-3-031-52448-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics