Skip to main content

C3-Net: Complex-Valued Cascading Cross-Domain Convolutional Neural Network for Reconstructing Undersampled CMR Images

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers (STACOM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14507))

  • 241 Accesses

Abstract

Cardiac magnetic resonance (CMR) plays an important role in clinically assessing cardiovascular diseases. However, CMR is inherently slow leading to patient discomfort and degraded image quality. Compared with parallel imaging (PI) and compressed sensing (CS), deep-learning-based methods have demonstrated superior image reconstruction performance, in terms of image quality and substantially reduced reconstruction times from highly undersampled CMR data. In this work, we proposed a novel complex-valued cascading cross-domain convolutional neural network, dubbed “C3-Net”, for improved image quality for accelerated CMR. C3-Net outperformed L1-ESPIRiT reconstruction, a baseline U-Net, and a real-valued cascading cross-domain CNN, especially with high acceleration factors (>8). The short-axis results from C3-Net showed reduced residual artifacts and improved temporal fidelity of cardiac motion. In long-axis results, C3-Net excelled in mitigating artifacts surrounding the heart wall and adipose regions in 2-chamber and 4-chamber views, while in a 3-chamber view all the listed methods resulted in suboptimal performance compared to the reference. The quantitative assessment indicated results consistent with assessment of the reconstructed images.

Q. Dou, K. Yan, S. Chen, and Z. Wang—Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ismail, T.F., Strugnell, W., Coletti, C., et al.: Cardiac MR: from theory to practice. Front. Cardiovasc. Med. 9, 826283 (2022)

    Article  Google Scholar 

  2. McDonagh, T.A., Metra, M., Adamo, M., et al.: 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 42(36), 3599–3726 (2021)

    Article  Google Scholar 

  3. Oscanoa, J.A., Middione, M.J., Alkan, C., et al.: Deep learning-based reconstruction for cardiac MRI: a review. Bioengineering (Basel) 10(3), 334 (2023)

    Article  Google Scholar 

  4. Wang, C., et al.: Recommendation for cardiac magnetic resonance imaging-based phenotypic study: imaging part. Phenomics 1(4), 151–170 (2021). https://doi.org/10.1007/s43657-021-00018-x

    Article  Google Scholar 

  5. Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P.: SENSE: sensitivity encoding for fast MRI. Magn. Reson. Med. 42(5), 952–962 (1999)

    Article  Google Scholar 

  6. Griswold, M.A., Jakob, P.M., Heidemann, R.M., et al.: Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med. 47(6), 1202–1210 (2002)

    Article  Google Scholar 

  7. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  8. Sandino, C.M., Lai, P., Vasanawala, S.S., Cheng, J.Y.: Accelerating cardiac cine MRI using a deep learning-based ESPIRiT reconstruction. Magn. Reson. Med. 85(1), 152–167 (2021)

    Article  Google Scholar 

  9. Küstner, T., Fuin, N., Hammernik, K., et al.: CINENet: deep learning-based 3D cardiac CINE MRI reconstruction with multi-coil complex-valued 4D spatio-temporal convolutions. Sci. Rep. 10(1), 13710 (2020)

    Article  Google Scholar 

  10. Uecker, M., Lai, P., Murphy, M.J., et al.: ESPIRiT—an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn. Reson. Med. 71(3), 990–1001 (2014)

    Article  Google Scholar 

  11. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  12. Trabelsi, C., Bilaniuk, O., Zhang, Y., et al.: Deep Complex Networks (2017). arXiv:1705.09792 [cs.NE]

  13. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance Normalization: The Missing Ingredient for Fast Stylization (2016). arXiv:1607.08022 [cs.CV]

  14. Wang, C., Lyu, J., Wang, S., et al.: CMRxRecon: an open cardiac MRI dataset for the competition of accelerated image reconstruction (2023). arXiv:2309.10836 [cs.CV]

  15. Paszke, A., Gross, S., Massa, F., et al.: Pytorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  16. Zhao, H., Gallo, O., Frosio, I., Kautz, J.: Loss functions for image restoration with neural networks. IEEE Trans. Comput. Imaging 3(1), 47–57 (2017)

    Article  Google Scholar 

  17. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2014). arXiv:1412.6980 [cs.LG]

  18. Schlemper, J., Caballero, J., Hajnal, J.V., Price, A.N., Rueckert, D.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 37(2), 491–503 (2018)

    Article  Google Scholar 

  19. Eo, T., Jun, Y., Kim, T., Jang, J., Lee, H.J., Hwang, D.: KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images. Magn. Reson. Med. 80(5), 2188–2201 (2018)

    Article  Google Scholar 

  20. Meyer, C.H., Hu, B.S., Nishimura, D.G., Macovski, A.: Fast spiral coronary artery imaging. Magn. Reson. Med. 28(2), 202–213 (1992)

    Article  Google Scholar 

  21. Feng, L., Axel, L., Chandarana, H., Block, K.T., Sodickson, D.K., Otazo, R.: XD-GRASP: golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing. Magn. Reson. Med. 75(2), 775–788 (2016)

    Article  Google Scholar 

  22. Jackson, J.I., Meyer, C.H., Nishimura, D.G., Macovski, A.: Selection of a convolution function for Fourier inversion using gridding. IEEE Trans. Med. Imaging 10(3), 473–478 (1991)

    Article  Google Scholar 

  23. Seiberlich, N., Breuer, F.A., Blaimer, M., Barkauskas, K., Jakob, P.M., Griswold, M.A.: Non-Cartesian data reconstruction using GRAPPA operator gridding (GROG). Magn. Reson. Med. 58(6), 1257–1265 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Dou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dou, Q., Yan, K., Chen, S., Wang, Z., Feng, X., Meyer, C.H. (2024). C3-Net: Complex-Valued Cascading Cross-Domain Convolutional Neural Network for Reconstructing Undersampled CMR Images. In: Camara, O., et al. Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers. STACOM 2023. Lecture Notes in Computer Science, vol 14507. Springer, Cham. https://doi.org/10.1007/978-3-031-52448-6_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52448-6_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52447-9

  • Online ISBN: 978-3-031-52448-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics