Skip to main content

Space-Time Deformable Attention Parallel Imaging Reconstruction for Highly Accelerated Cardiac MRI

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers (STACOM 2023)

Abstract

Cardiac magnetic resonance imaging (MRI) provides excellent soft tissue contrast resolution and stands as a pivotal noninvasive modality for assessing cardiac structure and function. However, owing to the intricate balance between spatial and temporal resolution, the reconstruction of cardiac cine MRI sequences dedicated to the heart presents a more complex challenge compared to the swift reconstruction of general magnetic resonance images. While numerous deep learning techniques have emerged to MRI reconstruction, a majority of these endeavors have tended to overlook the dynamic nuances of cardiac motion. In response to this gap, we propose a Space-Time Deformable Attention Parallel Imaging Reconstruction (STDAPIR) framework. This approach is initially refined through the utilization of the Variational Network (VarNet), where the subsequently reconstructed high-frequency data serves as a means to attain enhanced precision in coil sensitivity map estimation. Then, we extend this framework through the integration of Nonlinear Activation Free Network (NAFNet), incorporating the Space-Time Deformable Attention (STDA) module to accommodate spatiotemporal considerations. By introducing these advancements, our methodology aims to elevate the quality of reconstructed images within the cardiac domain. Empirical findings gleaned from our experiments underscore the efficacy of our proposed method, revealing a notable enhancement in both precision and perceptual fidelity of the resulting reconstructed images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bulluck, H., Hammond-Haley, M., Weinmann, S., Martinez-Macias, R., Hausenloy, D.J.: Myocardial infarct size by CMR in clinical cardioprotection studies: Insights from randomized controlled trials. JACC: Cardiovasc. Imaging 10(3), 230–240 (2017). https://doi.org/10.1016/j.jcmg.2017.01.008

  2. Duan, J., et al.: VS-Net: variable splitting network for accelerated parallel MRI reconstruction. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 713–722. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_78

    Chapter  Google Scholar 

  3. Fu, Y., et al.: A novel MRI segmentation method using CNN-based correction network for MRI-guided adaptive radiotherapy. Med. Phys. 45(11), 5129–5137 (2018). https://doi.org/10.1002/mp.13221

    Article  Google Scholar 

  4. Griswold, M.A., et al.: Generalized autocalibrating partially parallel acquisitions (grappa). Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. 47(6), 1202–1210 (2002)

    Article  Google Scholar 

  5. Huang, J., et al.: Swin transformer for fast MRI. Neurocomputing 493, 281–304 (2022). https://doi.org/10.1016/j.neucom.2022.04.051

    Article  Google Scholar 

  6. Huang, J., Xing, X., Gao, Z., Yang, G.: Swin deformable attention U-Net transformer (SDAUT) for explainable fast MRI. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. LNCS, vol. 13436, pp. 538–548. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16446-0_51

  7. Kofler, A., Haltmeier, M., Schaeffter, T., Kolbitsch, C.: An end-to-end-trainable iterative network architecture for accelerated radial multi-coil 2d cine MR image reconstruction. Med. Phys. 48(5), 2412–2425 (2021). https://doi.org/10.1002/mp.14809

    Article  Google Scholar 

  8. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  9. Murphy, M., Alley, M., Demmel, J., Keutzer, K., Vasanawala, S., Lustig, M.: Fast \(\ell _1\)-spirit compressed sensing parallel imaging MRI: scalable parallel implementation and clinically feasible runtime. IEEE Trans. Med. Imaging 31(6), 1250–1262 (2012)

    Article  Google Scholar 

  10. Oscanoa, J.A., et al.: Deep learning-based reconstruction for cardiac MRI: a review. Bioengineering 10(3), 334 (2023)

    Article  Google Scholar 

  11. Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P.: Sense: sensitivity encoding for fast MRI. Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. 42(5), 952–962 (1999)

    Article  Google Scholar 

  12. Ravishankar, S., Bresler, Y.: MR image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Trans. Med. Imaging 30(5), 1028–1041 (2010)

    Article  Google Scholar 

  13. Sriram, A., et al.: End-to-end variational networks for accelerated MRI reconstruction. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 64–73. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_7

    Chapter  Google Scholar 

  14. Wang, C., et al.: Cmrxrecon: an open cardiac MRI dataset for the competition of accelerated image reconstruction (2023)

    Google Scholar 

  15. Yiasemis, G., Sonke, J.J., Sánchez, C., Teuwen, J.: Recurrent variational network: a deep learning inverse problem solver applied to the task of accelerated MRI reconstruction (2022)

    Google Scholar 

  16. Zhan, B., et al.: D2FE-GAN: decoupled dual feature extraction based GAN for MRI image synthesis. Knowl.-Based Syst. 252, 109362 (2022). https://doi.org/10.1016/j.knosys.2022.109362

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengye Lyu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mei, L., Yang, K., Li, Y., Huang, S., Liu, Y., Lyu, M. (2024). Space-Time Deformable Attention Parallel Imaging Reconstruction for Highly Accelerated Cardiac MRI. In: Camara, O., et al. Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers. STACOM 2023. Lecture Notes in Computer Science, vol 14507. Springer, Cham. https://doi.org/10.1007/978-3-031-52448-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52448-6_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52447-9

  • Online ISBN: 978-3-031-52448-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics