Abstract
Cine Magnetic Resonance Imaging (MRI) allows for understanding of the heart’s function and condition in a non-invasive manner. Undersampling of the k-space is employed to reduce the scan duration, thus increasing patient comfort and reducing the risk of motion artefacts, at the cost of reduced image quality. In this challenge paper, we investigate the use of a convolutional recurrent neural network (CRNN) architecture to exploit temporal correlations in supervised cine cardiac MRI reconstruction. This is combined with a single-image super-resolution refinement module to improve single coil reconstruction by 4.4% in structural similarity and 3.9% in normalised mean square error compared to a plain CRNN implementation. We deploy a high-pass filter to our \(\ell _1\) loss to allow greater emphasis on high-frequency details which are missing in the original data. The proposed model demonstrates considerable enhancements compared to the baseline case and holds promising potential for further improving cardiac MRI reconstruction.
Y. Xue, Y. Du, G. Carloni, E. Pachetti, C. Jordan—These authors contributed equally.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aggarwal, H.K., Mani, M.P., Jacob, M.: MoDL: model-based deep learning architecture for inverse problems. IEEE Trans. Med. Imaging 38(2), 394–405 (2019). https://doi.org/10.1109/TMI.2018.2865356
Antun, V., Renna, F., Poon, C., Adcock, B., Hansen, A.C.: On instabilities of deep learning in image reconstruction and the potential costs of AI. Proc. Natl. Acad. Sci. 117(48), 30088–30095 (2020)
Bilecen, B.B., Ayazoglu, M.: Bicubic++: slim, slimmer, slimmest - designing an industry-grade super-resolution network (2023). https://arxiv.org/abs/2305.02126
Hammernik, K., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79(6), 3055–3071 (2018). https://doi.org/10.1002/mrm.26977
Han, X., Liu, Y., Lin, Y., Chen, K., Zhang, W., Liu, Q.: MDAMF: reconstruction of cardiac cine MRI under free-breathing using motion-guided deformable alignment and multi-resolution fusion (2023). https://arxiv.org/abs/2303.04968
Han, Y., Yoo, J., Kim, H.H., Shin, H.J., Sung, K., Ye, J.C.: Deep learning with domain adaptation for accelerated projection-reconstruction MR. Magn. Reson. Med. 80(3), 1189–1205 (2018). https://doi.org/10.1002/mrm.27106
Hyun, C.M., Kim, H.P., Lee, S.M., Lee, S., Seo, J.K.: Deep learning for undersampled MRI reconstruction. Phys. Med. Biol. 63(13), 135007 (2018). https://doi.org/10.1088/1361-6560/aac71a
Jalal, A., Arvinte, M., Daras, G., Price, E., Dimakis, A.G., Tamir, J.: Robust compressed sensing MRI with deep generative priors. In: Advances in Neural Information Processing Systems, vol. 34, pp. 14938–14954 (2021)
Kofler, A., Haltmeier, M., Schaeffter, T., Kolbitsch, C.: An end-to-end-trainable iterative network architecture for accelerated radial multi-coil 2D cine MR image reconstruction. Med. Phys. 48(5), 2412–2425 (2021). https://doi.org/10.1002/mp.14809
Küstner, T., et al.: CINENet: deep learning-based 3D cardiac CINE MRI reconstruction with multi-coil complex-valued 4D spatio-temporal convolutions. Sci. Rep. 10, 13710 (2020). https://doi.org/10.1038/s41598-020-70551-8
Lee, D., Yoo, J., Tak, S., Ye, J.C.: Deep residual learning for accelerated MRI using magnitude and phase networks. IEEE Trans. Biomed. Eng. 65(9), 1985–1995 (2018). https://doi.org/10.1109/TBME.2018.2821699
Lyu, J., et al.: Region-focused multi-view transformer-based generative adversarial network for cardiac cine MRI reconstruction. Med. Image Anal. 85, 102760 (2023). https://doi.org/10.1016/j.media.2023.102760
Patel, D., Sastry, P.S.: Memorization in deep neural networks: does the loss function matter? In: Karlapalem, K., et al. (eds.) PAKDD 2021. LNCS (LNAI), vol. 12713, pp. 131–142. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75765-6_11
Qin, C., Schlemper, J., Caballero, J., Price, A.N., Hajnal, J.V., Rueckert, D.: Convolutional recurrent neural networks for dynamic MR Image reconstruction. IEEE Trans. Med. Imaging 38(1), 280–290 (2019). https://doi.org/10.1109/TMI.2018.2863670
Schlemper, J., Caballero, J., Hajnal, J.V., Price, A.N., Rueckert, D.: A deep cascade of convolutional neural networks for dynamic MR Image reconstruction. IEEE Trans. Med. Imaging 37(2), 491–503 (2018). https://doi.org/10.1109/TMI.2017.2760978
Terpstra, M.L., Maspero, M., Sbrizzi, A., van den Berg, C.A.: \(\perp \)-loss: a symmetric loss function for magnetic resonance imaging reconstruction and image registration with deep learning. Med. Image Anal. 80, 102509 (2022). https://doi.org/10.1016/j.media.2022.102509
Tezcan, K.C., Baumgartner, C.F., Luechinger, R., Pruessmann, K.P., Konukoglu, E.: MR Image reconstruction using deep density priors. IEEE Trans. Med. Imaging 38(7), 1633–1642 (2019). https://doi.org/10.1109/TMI.2018.2887072
Vornehm, M., Wetzl, J., Giese, D., Ahmad, R., Knoll, F.: Spatiotemporal variational neural network for reconstruction of highly accelerated cardiac cine MRI. Eur. Heart J. - Cardiovasc. Imaging 23(Supplement 2), 34–35 (2022). https://doi.org/10.1093/ehjci/jeac141.018
Wang, C., et al.: Recommendation for cardiac magnetic resonance imaging-based phenotypic study: imaging part. Phenomics 1, 151–170 (2021). https://doi.org/10.1007/s43657-021-00018-x
Wang, C., et al.: CMR\(\times \)Recon: an open cardiac MRI dataset for the competition of accelerated image reconstruction (2023)
Wang, S., et al.: Accelerating magnetic resonance imaging via deep learning. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 514–517 (2016). https://doi.org/10.1109/ISBI.2016.7493320
Yang, G., et al.: DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans. Med. Imaging 37(6), 1310–1321 (2018). https://doi.org/10.1109/TMI.2017.2785879
Yang, J., Küstner, T., Hu, P., Liò, P., Qi, H.: End-to-end deep learning of non-rigid groupwise registration and reconstruction of dynamic MRI. Front. Cardiovasc. Med. 9, 880186 (2022). https://doi.org/10.3389/fcvm.2022.880186
Zhang, T., Pauly, J.M., Vasanawala, S.S., Lustig, M.: Coil compression for accelerated imaging with Cartesian sampling. Magn. Reson. Med. 69(2), 571–582 (2013). https://doi.org/10.1002/mrm.24267
Zhang, Y., Hu, Y.: Dynamic cardiac MRI reconstruction using combined tensor nuclear norm and Casorati matrix nuclear norm regularizations. In: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), pp. 1–4 (2022). https://doi.org/10.1109/ISBI52829.2022.9761409
Acknowledgements
This work was supported in part by National Institutes of Health (NIH) grant 7R01HL148788-03. C. Jordan, Y. Du and Y. Xue thank additional financial support from the School of Engineering, the University of Edinburgh. Sotirios A. Tsaftaris also acknowledges the support of Canon Medical and the Royal Academy of Engineering and the Research Chairs and Senior Research Fellowships scheme (grant RCSRF1819\(\backslash \)8\(\backslash \)25). The authors would like to thank Dr. Chen and K. Vilouras for inspirational discussions and assistance.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
CMRxRecon Summary Information
CMRxRecon Summary Information
-
Task: Cine. Data used: Single-channel. Docker submitted: Yes.
Final model: CRNN backbone with SISR module (2.3M parameters).
Unrolling: Yes. Domain: Complex and amplitude. k-space fidelity: Yes.
Pretraining: No. Augmentation/standardisation: No.
Trained on: 3\(\times \)GPU (40GB vRAM). Loss function: \(\perp \)-SSIM-\(\ell _1\)
Training time: 23h (33 epochs). Inference time: 1 h 45 min (120 subjects).
Test results: PSNR = 35.582, SSIM = 0.946, NMSE = 0.0374
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Xue, Y., Du, Y., Carloni, G., Pachetti, E., Jordan, C., Tsaftaris, S.A. (2024). Cine Cardiac MRI Reconstruction Using a Convolutional Recurrent Network with Refinement. In: Camara, O., et al. Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers. STACOM 2023. Lecture Notes in Computer Science, vol 14507. Springer, Cham. https://doi.org/10.1007/978-3-031-52448-6_40
Download citation
DOI: https://doi.org/10.1007/978-3-031-52448-6_40
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-52447-9
Online ISBN: 978-3-031-52448-6
eBook Packages: Computer ScienceComputer Science (R0)