Skip to main content

Global Sensitivity Analysis of Thrombus Formation in the Left Atrial Appendage of Atrial Fibrillation Patients

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers (STACOM 2023)

Abstract

Atrial Fibrillation (AF) is the most common type of cardiac arrhythmia. Most AF-related thrombi originate within the left atrial appendage (LAA). This study investigated the key factors influencing thrombus formation in the LAA using global sensitivity analysis (GSA) based on computational fluid dynamics (CFD) simulations. GSA was conducted to assess the effects of four physiological input parameters: initial thrombin location within the LAA, fibrinogen (Fg) concentration in the blood, sensitivity to activated protein C (K3 constant), and inlet velocity. A total of 160 CFD simulations were performed using a 2D idealized left atrial geometry with the most common LAA morphologies: Cactus (CA), Chickenwing (CW), Windsock (WS), and Broccoli (BR). The area under the curve (AUC) of fibrin, which is a precursor of thrombus formation, was computed in the LAA to quantify net fibrin formation over time. Gaussian Process Emulators (GPE) were trained using the simulations’ results to predict the Sobol indices from the input parameters. Fg concentration, initial thrombin location, and their interaction exhibited the largest Sobol indices in all LAA morphologies, impacting both average and maximum AUC. Inlet velocity affected the average AUC in BR, and its interaction with the initial thrombus location was significant for this morphology. Additionally, K3 contributed to the output variance in CW and BR. These findings emphasize the overall significance of Fg concentration and initial thrombin location, along with their interaction, in thrombus formation. The impacts of inlet velocity and K3 concentration appear to be morphology-specific. The distinct values obtained from maximum and average fibrin AUC provide complementary insights into thrombus formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aguado, A.M., et al.: In silico optimization of Left Atrial Appendage Occluder implantation using interactive and modeling tools. Front. Physiol. 10, 237 (2019). https://doi.org/10.3389/fphys.2019.00237

    Article  Google Scholar 

  2. Al-Saady, N.M., Obel, O.A., Camm, A.J.: Left atrial appendage: structure, function, and role in thromboembolism. Heart 82(5), 547–554 (1999). https://doi.org/10.1136/hrt.82.5.547

    Article  Google Scholar 

  3. Androulakis, E., Drosou, K., Koukouvinos, C., Zhou, Y.: Measures of uniformity in experimental designs: a selective overview. Commun. Stat. Theor. Meth. 45, 3782–3806 (2016). https://doi.org/10.1080/03610926.2014.966843

    Article  MathSciNet  Google Scholar 

  4. Ataullakhanov, F., Zarnitsyna, V., Kondratovich, A., Lobanova, E., Sarbash, V.: A new class of stopping self-sustained waves: a factor determining the spatial dynamics of blood coagulation. Phys. Usp. 45, 619 (2002). https://doi.org/10.1070/PU2002v045n06ABEH001090

    Article  Google Scholar 

  5. Beigel, R., Wunderlich, N.C., Ho, S.Y., Arsanjani, R., Siegel, R.J.: The left atrial appendage: anatomy, function, and noninvasive evaluation. JACC Cardiovasc. Imaging 7(12), 1251–1265 (2014). https://doi.org/10.1016/j.jcmg.2014.08.009

    Article  Google Scholar 

  6. Chao, T.H., Tsai, L.M., Tsai, W.C., Li, Y.H., Lin, J.L., Chen, J.W.: Effect of atrial fibrillation on pulmonary venous flow patterns assessed by doppler transesophageal echocardiography. Chest 117(6), 1546–1550 (2000). https://doi.org/10.1378/chest.117.6.1546

    Article  Google Scholar 

  7. Cresti, A., et al.: Prevalence of extra-appendage thrombosis in non-valvular atrial fibrillation and atrial flutter in patients undergoing cardioversion: a large transoesophageal echo study. EuroIntervention 15, e225–e230 (2019). https://doi.org/10.4244/EIJ-D-19-00128

    Article  Google Scholar 

  8. Damblin, G., Couplet, M., Iooss, B.: Numerical studies of space-filling designs: optimization of Latin Hypercube samples and subprojection properties. J. Simul. 7, 276–289 (2013). https://doi.org/10.1057/jos.2013.16

    Article  Google Scholar 

  9. Ding, W.Y., Gupta, D., Lip, G.Y.: Atrial fibrillation and the prothrombotic state: revisiting Virchow’s triad in 2020. Heart 106, 1463–1468 (2020). https://doi.org/10.1136/heartjnl-2020-316977

    Article  Google Scholar 

  10. Faletra, F.F., Narula, J.: Imaging of cardiac anatomy, 5th edn. In: Ellenbogen, K.A., Wilkoff, B.L., Kay, G.N., Lau, C.P., Auricchio, A. (eds.) Clinical Cardiac Pacing, Defibrillation and Resynchronization Therapy, pp. 15–60. Elsevier (2017). https://doi.org/10.1016/B978-0-323-37804-8.00002-X

  11. Freedman, B., Potpara, T.S., Lip, G.Y.: Stroke prevention in atrial fibrillation. Lancet 388(10046), 806–817 (2016). https://doi.org/10.1016/S0140-6736(16)31257-0

    Article  Google Scholar 

  12. Hindricks, G., et al.: 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): the task force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) developed with the special contribution of the European Heart Rhythm Association (EHRA) of the (ESC). Eur. Heart J. (2020). https://doi.org/10.1093/eurheartj/ehaa612

  13. Kattula, S., Byrnes, J.R., Wolberg, A.S.: Fibrinogen and fibrin in hemostasis and thrombosis. Arterioscler. Thromb. Vasc. Biol. 37(3), e13–e21 (2017). https://doi.org/10.1161/ATVBAHA.117.308564

    Article  Google Scholar 

  14. Lee, J., et al.: Multi-physics computational modeling in CHeart. SIAM J. Sci. Comput. 38(3), C150–C178 (2016). https://doi.org/10.1137/15M1014097

    Article  Google Scholar 

  15. Lip, G.Y., Lowe, G.D., Rumley, A., Dunn, F.G.: Fibrinogen and fibrin d-dimer levels in paroxysmal atrial fibrillation: evidence for intermediate elevated levels of intravascular thrombogenesis. Am. Heart J. 131(4), 724–730 (1996). https://doi.org/10.1016/s0002-8703(96)90278-1

    Article  Google Scholar 

  16. Longobardi, S., et al.: Predicting left ventricular contractile function via gaussian process emulation in aortic-banded rats. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 378, 20190334 (2020). https://doi.org/10.1098/rsta.2019.0334

    Article  Google Scholar 

  17. Marroquin, L., Tirado-Conte, G., Pracoń, R., et al.: Management and outcomes of patients with left atrial appendage thrombus prior to percutaneous closure. Heart 108, 1098–1106 (2022). https://doi.org/10.1136/heartjnl-2021-319811

    Article  Google Scholar 

  18. Prakhya, K.S., Luo, Y., Adkins, J., Hu, X., Wang, Q.J., Whiteheart, S.W.: A sensitive and adaptable method to measure platelet-fibrin clot contraction kinetics. Res. Pract. Thromb. Haemost. 6(5), e12755 (2022). https://doi.org/10.1002/rth2.12755

    Article  Google Scholar 

  19. Qureshi, A., et al.: Left atrial appendage morphology impacts thrombus formation risks in multi-physics atrial models. In: 2021 Computing in Cardiology (CinC), Brno, Czech Republic, pp. 1–4 (2021). https://doi.org/10.23919/CinC53138.2021.9662901

  20. Qureshi, A., et al.: Modelling Virchow’s triad to improve stroke risk assessment in atrial fibrillation patients. In: Computing in Cardiology (CinC), vol. 498, pp. 1–4. IEEE (2022). https://doi.org/10.22489/CinC.2022.378

  21. Qureshi, A., Lip, G.Y., Nordsletten, D.A., Williams, S.E., Aslanidi, O., de Vecchi, A.: Imaging and biophysical modelling of thrombogenic mechanisms in atrial fibrillation and stroke. Front. Cardiovasc. Med. 9, 1074562 (2023). https://doi.org/10.3389/fcvm.2022.1074562

    Article  Google Scholar 

  22. Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., Tarantola, S.: Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comput. Phys. Commun. 181, 259–270 (2010). https://doi.org/10.1016/j.cpc.2009.09.018

    Article  MathSciNet  Google Scholar 

  23. Svensson, P.J., Dahlbäck, B.: Resistance to activated protein c as a basis for venous thrombosis. N. Engl. J. Med. 330(8), 517–522 (1994). https://doi.org/10.1056/NEJM199402243300801

    Article  Google Scholar 

  24. Wong, G., Singh, G.: Transcatheter left atrial appendage closure. Methodist Debakey Cardiovasc. J. 19, 67–77 (2023). https://doi.org/10.14797/mdcvj.1215

    Article  Google Scholar 

  25. Yaghi, S., Song, C., Gray, W., Furie, K., Elkind, M., Kamel, H.: Left atrial appendage function and stroke risk. Stroke 46 (2015). https://doi.org/10.1161/STROKEAHA.115.011273

  26. Zhang, X.Y., Trame, M., Lesko, L., Schmidt, S.: Sobol sensitivity analysis: a tool to guide the development and evaluation of systems pharmacology models. CPT Pharmacomet. Syst. Pharmacol. 4 (2015). https://doi.org/10.1002/psp4.6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zineb Smine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Smine, Z. et al. (2024). Global Sensitivity Analysis of Thrombus Formation in the Left Atrial Appendage of Atrial Fibrillation Patients. In: Camara, O., et al. Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers. STACOM 2023. Lecture Notes in Computer Science, vol 14507. Springer, Cham. https://doi.org/10.1007/978-3-031-52448-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52448-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52447-9

  • Online ISBN: 978-3-031-52448-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics