Abstract
Quantitative cardiac magnetic resonance imaging (MRI) is an increasingly important diagnostic tool for cardiovascular diseases. Yet, co-registration of all baseline images within the quantitative MRI sequence is essential for the accuracy and precision of quantitative maps. However, co-registering all baseline images from a quantitative cardiac MRI sequence remains a nontrivial task because of the simultaneous changes in intensity and contrast, in combination with cardiac and respiratory motion. To address the challenge, we propose a novel motion correction framework based on robust principle component analysis (rPCA) that decomposes quantitative cardiac MRI into low-rank and sparse components, and we integrate the groupwise CNN-based registration backbone within the rPCA framework. The low-rank component of rPCA corresponds to the quantitative mapping (i.e. limited degree of freedom in variation), while the sparse component corresponds to the residual motion, making it easier to formulate and solve the groupwise registration problem. We evaluated our proposed method on cardiac T1 mapping by the modified Look-Locker inversion recovery (MOLLI) sequence, both before and after the Gadolinium contrast agent administration. Our experiments showed that our method effectively improved registration performance over baseline methods without introducing rPCA, and reduced quantitative mapping error in both in-domain (pre-contrast MOLLI) and out-of-domain (post-contrast MOLLI) inference. The proposed rPCA framework is generic and can be integrated with other registration backbones.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmad, S., Fan, J., Dong, P., Cao, X., Yap, P.T., Shen, D.: Deep learning deformation initialization for rapid groupwise registration of inhomogeneous image populations. Front. Neuroinform. 13, 34 (2019)
Ashburner, J.: A fast diffeomorphic image registration algorithm. Neuroimage 38(1), 95–113 (2007)
Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)
Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: Voxelmorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)
Brudfors, M., Balbastre, Y., Ashburner, J.: Groupwise multimodal image registration using joint total variation. In: Papież, B.W., Namburete, A.I.L., Yaqub, M., Noble, J.A. (eds.) MIUA 2020. CCIS, vol. 1248, pp. 184–194. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52791-4_15
Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM (JACM) 58(3), 1–37 (2011)
Che, T., et al.: Deep group-wise registration for multi-spectral images from fundus images. IEEE Access 7, 27650–27661 (2019)
Chen, X., Diaz-Pinto, A., Ravikumar, N., Frangi, A.F.: Deep learning in medical image registration. Prog. Biomed. Eng. 3(1), 012003 (2021)
Chow, K., Flewitt, J.A., Green, J.D., Pagano, J.J., Friedrich, M.G., Thompson, R.B.: Saturation recovery single-shot acquisition (SASHA) for myocardial T1 mapping. Magn. Reson. Med. 71(6), 2082–2095 (2014)
Fechter, T., Baltas, D.: One-shot learning for deformable medical image registration and periodic motion tracking. IEEE Trans. Med. Imaging 39(7), 2506–2517 (2020)
Feng, J., Xu, H., Yan, S.: Online robust PCA via stochastic optimization. In: Advances in Neural Information Processing Systems, vol. 26 (2013)
Feng, Q., et al.: Liver DCE-MRI registration in manifold space based on robust principal component analysis. Sci. Rep. 6(1), 34461 (2016)
Geng, X., Christensen, G.E., Gu, H., Ross, T.J., Yang, Y.: Implicit reference-based group-wise image registration and its application to structural and functional MRI. Neuroimage 47(4), 1341–1351 (2009)
Gonzales, R., et al.: MOCOnet: robust motion correction of cardiovascular magnetic resonance T1 mapping using convolutional neural networks. Front. Cardiovasc. Med. 8, 768245 (2021)
Guyader, J.M., et al.: Groupwise image registration based on a total correlation dissimilarity measure for quantitative MRI and dynamic imaging data. Sci. Rep. 8(1), 13112 (2018)
Hamy, V., et al.: Respiratory motion correction in dynamic MRI using robust data decomposition registration-application to DCE-MRI. Med. Image Anal. 18(2), 301–313 (2014)
Huizinga, W., et al.: PCA-based groupwise image registration for quantitative MRI. Med. Image Anal. 29, 65–78 (2016)
Kellman, P., Arai, A.E., Xue, H.: T1 and extracellular volume mapping in the heart: estimation of error maps and the influence of noise on precision. J. Cardiovasc. Magn. Reson. 15(1), 1–12 (2013)
Klein, A., et al.: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage 46(3), 786–802 (2009)
Li, Y., Wu, C., Qi, H., Si, D., Ding, H., Chen, H.: Motion correction for native myocardial T1 mapping using self-supervised deep learning registration with contrast separation. NMR Biomed. 35(10), e4775 (2022)
Makela, T., et al.: A review of cardiac image registration methods. IEEE Trans. Med. Imaging 21(9), 1011–1021 (2002)
Messroghli, D.R., Radjenovic, A., Kozerke, S., Higgins, D.M., Sivananthan, M.U., Ridgway, J.P.: Modified look-locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn. Reson. Med. Official J. Int. Soc. Magn. Reson. Med. 52(1), 141–146 (2004)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015 Part III. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
de Roos, A., Higgins, C.B.: Cardiac radiology: centenary review. Radiology 273(2S), S142–S159 (2014)
Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)
Tao, Q., van der Tol, P., Berendsen, F.F., Paiman, E.H., Lamb, H.J., van der Geest, R.J.: Robust motion correction for myocardial T1 and extracellular volume mapping by principle component analysis-based groupwise image registration. J. Magn. Reson. Imaging 47(5), 1397–1405 (2018)
de Vos, B.D., van der Velden, B.H., Sander, J., Gilhuijs, K.G., Staring, M., Išgum, I.: Mutual information for unsupervised deep learning image registration. In: Medical Imaging 2020: Image Processing, vol. 11313, pp. 155–161. SPIE (2020)
Xue, H., et al.: Motion correction for myocardial T1 mapping using image registration with synthetic image estimation. Magn. Reson. Med. 67(6), 1644–1655 (2012)
Zhang, Y., Wu, X., Gach, H.M., Li, H., Yang, D.: Groupregnet: a groupwise one-shot deep learning-based 4D image registration method. Phys. Med. Biol. 66(4), 045030 (2021)
Zhou, T., Tao, D.: Godec: randomized low-rank & sparse matrix decomposition in noisy case. In: Proceedings of the 28th International Conference on Machine Learning. ICML 2011 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, X., Zhang, Y., Zhao, Y., van Gemert, J., Tao, Q. (2024). Contrast-Agnostic Groupwise Registration by Robust PCA for Quantitative Cardiac MRI. In: Camara, O., et al. Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers. STACOM 2023. Lecture Notes in Computer Science, vol 14507. Springer, Cham. https://doi.org/10.1007/978-3-031-52448-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-52448-6_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-52447-9
Online ISBN: 978-3-031-52448-6
eBook Packages: Computer ScienceComputer Science (R0)