Skip to main content

Contrast-Agnostic Groupwise Registration by Robust PCA for Quantitative Cardiac MRI

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers (STACOM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14507))

  • 706 Accesses

Abstract

Quantitative cardiac magnetic resonance imaging (MRI) is an increasingly important diagnostic tool for cardiovascular diseases. Yet, co-registration of all baseline images within the quantitative MRI sequence is essential for the accuracy and precision of quantitative maps. However, co-registering all baseline images from a quantitative cardiac MRI sequence remains a nontrivial task because of the simultaneous changes in intensity and contrast, in combination with cardiac and respiratory motion. To address the challenge, we propose a novel motion correction framework based on robust principle component analysis (rPCA) that decomposes quantitative cardiac MRI into low-rank and sparse components, and we integrate the groupwise CNN-based registration backbone within the rPCA framework. The low-rank component of rPCA corresponds to the quantitative mapping (i.e. limited degree of freedom in variation), while the sparse component corresponds to the residual motion, making it easier to formulate and solve the groupwise registration problem. We evaluated our proposed method on cardiac T1 mapping by the modified Look-Locker inversion recovery (MOLLI) sequence, both before and after the Gadolinium contrast agent administration. Our experiments showed that our method effectively improved registration performance over baseline methods without introducing rPCA, and reduced quantitative mapping error in both in-domain (pre-contrast MOLLI) and out-of-domain (post-contrast MOLLI) inference. The proposed rPCA framework is generic and can be integrated with other registration backbones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmad, S., Fan, J., Dong, P., Cao, X., Yap, P.T., Shen, D.: Deep learning deformation initialization for rapid groupwise registration of inhomogeneous image populations. Front. Neuroinform. 13, 34 (2019)

    Article  Google Scholar 

  2. Ashburner, J.: A fast diffeomorphic image registration algorithm. Neuroimage 38(1), 95–113 (2007)

    Article  Google Scholar 

  3. Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)

    Article  Google Scholar 

  4. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: Voxelmorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  5. Brudfors, M., Balbastre, Y., Ashburner, J.: Groupwise multimodal image registration using joint total variation. In: Papież, B.W., Namburete, A.I.L., Yaqub, M., Noble, J.A. (eds.) MIUA 2020. CCIS, vol. 1248, pp. 184–194. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52791-4_15

    Chapter  Google Scholar 

  6. Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM (JACM) 58(3), 1–37 (2011)

    Article  MathSciNet  Google Scholar 

  7. Che, T., et al.: Deep group-wise registration for multi-spectral images from fundus images. IEEE Access 7, 27650–27661 (2019)

    Article  Google Scholar 

  8. Chen, X., Diaz-Pinto, A., Ravikumar, N., Frangi, A.F.: Deep learning in medical image registration. Prog. Biomed. Eng. 3(1), 012003 (2021)

    Google Scholar 

  9. Chow, K., Flewitt, J.A., Green, J.D., Pagano, J.J., Friedrich, M.G., Thompson, R.B.: Saturation recovery single-shot acquisition (SASHA) for myocardial T1 mapping. Magn. Reson. Med. 71(6), 2082–2095 (2014)

    Article  Google Scholar 

  10. Fechter, T., Baltas, D.: One-shot learning for deformable medical image registration and periodic motion tracking. IEEE Trans. Med. Imaging 39(7), 2506–2517 (2020)

    Article  Google Scholar 

  11. Feng, J., Xu, H., Yan, S.: Online robust PCA via stochastic optimization. In: Advances in Neural Information Processing Systems, vol. 26 (2013)

    Google Scholar 

  12. Feng, Q., et al.: Liver DCE-MRI registration in manifold space based on robust principal component analysis. Sci. Rep. 6(1), 34461 (2016)

    Article  Google Scholar 

  13. Geng, X., Christensen, G.E., Gu, H., Ross, T.J., Yang, Y.: Implicit reference-based group-wise image registration and its application to structural and functional MRI. Neuroimage 47(4), 1341–1351 (2009)

    Article  Google Scholar 

  14. Gonzales, R., et al.: MOCOnet: robust motion correction of cardiovascular magnetic resonance T1 mapping using convolutional neural networks. Front. Cardiovasc. Med. 8, 768245 (2021)

    Google Scholar 

  15. Guyader, J.M., et al.: Groupwise image registration based on a total correlation dissimilarity measure for quantitative MRI and dynamic imaging data. Sci. Rep. 8(1), 13112 (2018)

    Article  Google Scholar 

  16. Hamy, V., et al.: Respiratory motion correction in dynamic MRI using robust data decomposition registration-application to DCE-MRI. Med. Image Anal. 18(2), 301–313 (2014)

    Article  Google Scholar 

  17. Huizinga, W., et al.: PCA-based groupwise image registration for quantitative MRI. Med. Image Anal. 29, 65–78 (2016)

    Article  Google Scholar 

  18. Kellman, P., Arai, A.E., Xue, H.: T1 and extracellular volume mapping in the heart: estimation of error maps and the influence of noise on precision. J. Cardiovasc. Magn. Reson. 15(1), 1–12 (2013)

    Article  Google Scholar 

  19. Klein, A., et al.: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage 46(3), 786–802 (2009)

    Article  Google Scholar 

  20. Li, Y., Wu, C., Qi, H., Si, D., Ding, H., Chen, H.: Motion correction for native myocardial T1 mapping using self-supervised deep learning registration with contrast separation. NMR Biomed. 35(10), e4775 (2022)

    Article  Google Scholar 

  21. Makela, T., et al.: A review of cardiac image registration methods. IEEE Trans. Med. Imaging 21(9), 1011–1021 (2002)

    Article  Google Scholar 

  22. Messroghli, D.R., Radjenovic, A., Kozerke, S., Higgins, D.M., Sivananthan, M.U., Ridgway, J.P.: Modified look-locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn. Reson. Med. Official J. Int. Soc. Magn. Reson. Med. 52(1), 141–146 (2004)

    Article  Google Scholar 

  23. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015 Part III. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  24. de Roos, A., Higgins, C.B.: Cardiac radiology: centenary review. Radiology 273(2S), S142–S159 (2014)

    Article  Google Scholar 

  25. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)

    Article  Google Scholar 

  26. Tao, Q., van der Tol, P., Berendsen, F.F., Paiman, E.H., Lamb, H.J., van der Geest, R.J.: Robust motion correction for myocardial T1 and extracellular volume mapping by principle component analysis-based groupwise image registration. J. Magn. Reson. Imaging 47(5), 1397–1405 (2018)

    Article  Google Scholar 

  27. de Vos, B.D., van der Velden, B.H., Sander, J., Gilhuijs, K.G., Staring, M., Išgum, I.: Mutual information for unsupervised deep learning image registration. In: Medical Imaging 2020: Image Processing, vol. 11313, pp. 155–161. SPIE (2020)

    Google Scholar 

  28. Xue, H., et al.: Motion correction for myocardial T1 mapping using image registration with synthetic image estimation. Magn. Reson. Med. 67(6), 1644–1655 (2012)

    Article  Google Scholar 

  29. Zhang, Y., Wu, X., Gach, H.M., Li, H., Yang, D.: Groupregnet: a groupwise one-shot deep learning-based 4D image registration method. Phys. Med. Biol. 66(4), 045030 (2021)

    Article  Google Scholar 

  30. Zhou, T., Tao, D.: Godec: randomized low-rank & sparse matrix decomposition in noisy case. In: Proceedings of the 28th International Conference on Machine Learning. ICML 2011 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinqi Li .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3607 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, X., Zhang, Y., Zhao, Y., van Gemert, J., Tao, Q. (2024). Contrast-Agnostic Groupwise Registration by Robust PCA for Quantitative Cardiac MRI. In: Camara, O., et al. Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers. STACOM 2023. Lecture Notes in Computer Science, vol 14507. Springer, Cham. https://doi.org/10.1007/978-3-031-52448-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52448-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52447-9

  • Online ISBN: 978-3-031-52448-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics