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Abstract. Quantitative cardiac magnetic resonance imaging (MRI) is
an increasingly important diagnostic tool for cardiovascular diseases. Yet,
co-registration of all baseline images within the quantitative MRI se-
quence is essential for the accuracy and precision of quantitative maps.
However, co-registering all baseline images from a quantitative cardiac
MRI sequence remains a nontrivial task because of the simultaneous
changes in intensity and contrast, in combination with cardiac and res-
piratory motion. To address the challenge, we propose a novel motion cor-
rection framework based on robust principle component analysis (rPCA)
that decomposes quantitative cardiac MRI into low-rank and sparse com-
ponents, and we integrate the groupwise CNN-based registration back-
bone within the rPCA framework. The low-rank component of rPCA
corresponds to the quantitative mapping (i.e. limited degree of freedom
in variation), while the sparse component corresponds to the residual
motion, making it easier to formulate and solve the groupwise registra-
tion problem. We evaluated our proposed method on cardiac T1 map-
ping by the modified Look-Locker inversion recovery (MOLLI) sequence,
both before and after the Gadolinium contrast agent administration.
Our experiments showed that our method effectively improved regis-
tration performance over baseline methods without introducing rPCA,
and reduced quantitative mapping error in both in-domain (pre-contrast
MOLLI) and out-of-domain (post-contrast MOLLI) inference. The pro-
posed rPCA framework is generic and can be integrated with other reg-
istration backbones.

Keywords: Quantitative MRI · Groupwise registration · Robust PCA
· motion correction.

1 Introduction

Quantitative cardiac MRI, such as T1 and T2 mapping [22], is an increasingly
important imaging modality to examine cardiovascular diseases [24]. However,
the quality of quantitative mapping is negatively affected by respiratory and
cardiac motion during the MR acquisition procedure [28]. Such motion leads to
misalignment of tissue across baseline images, resulting in deteriorated accuracy
and precision of the final quantitative mapping [18]. To improve the quality of
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quantitative cardiac MRI, motion correction by deformable image registration
is an essential part of the post-processing pipeline [2,8,21].

Conventionally, deformable image registration is implemented in a pairwise
fashion: each time two images are registered, with one designated as fixed and
one moving. However, for quantitative cardiac MRI, the number of images is
highly variable (ranging from 3 to > 20) depending on the specific sequence. This
makes pairwise registration not a natural option, as the “best” fixed image is
hard to define. Moreover, registration error easily propagates across the baseline
images, given all pairwise registration steps are independently performed. The
alternative approach of groupwise image registration, which registers all base-
line images simultaneously, was proposed for quantitative MRI motion correc-
tion [17,26,12,13]. Groupwise registration promises improved robustness across a
sequence of images by optimizing a global metric which promotes co-registration
of all frames, including those with extremely poor contrast and hence difficult
to register in a pairwise fashion. Groupwise image registration can be divided
into two paradigms: classical iterative optimization methods that are relatively
slow [16,17,26,12,15,20] and deep-learning-based methods that promise fast in-
ference [1,7,10,29,14].

A special challenge in motion correction for quantitative cardiac MRI is that
the change in image contrast and intensity can vary drastically across baseline
images, completely agnostic to the image registration pipeline [28]. The pattern
of variation, which is determined by the underlying MR signal model, differs
per quantitative sequences; even with the same signal model, the contrast is still
dependent on the exact scheme of acquisition, which differs again among MRI
machines. This makes it difficult to design a consistently reliable registration
metric for optimization. Conventional registration metrics, such as NCC and
NMI, can still be sensitive to agnostic contrast changes and fail [5,27,19]. There-
fore, finding a robust registration metric in the face of agnostic contrast changes
is of great interest.

Furthermore, we observed that an under-studied phenomenon is the degen-
erated solution of groupwise registration, in the format of ghosting artefacts or
pixel collapse [27]. These degenerated solutions lead to an optimal metric, but
are implausible because they violate the anatomical consistency. In this paper,
we will further investigate the susceptibility of NCC and NMI to such artifacts.

In this work, we set out to tackle the agnostic contrast change in quantita-
tive cardiac MRI by designing a novel registration framework, which integrates
robust PCA (rPCA) [6] with state-of-the-art image registration backbones. Our
rationale of introducing rPCA is as follows: firstly, the signal model, which is
typically governed by physics principles, has a limited degree of freedom [9,22],
underlying the low-rank component of rPCA. Secondly, the motion of quanti-
tative cardiac MRI is sparse in the sense that it is often concentrated around
the heart, induced by non-ideal breath-hold and heart rate variability, while the
background, e.g., rib cage and lung, stay largely static. Decomposition of the two
components creates ease for registration algorithms. In this paper, we propose
to integrate rPCA with the state-of-the-art deep-learning groupwise registration
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Fig. 1. Overview of the proposed framework for contrast-agnostic registration. The
dotted rectangle denotes the iterative registration pipeline that progressively corrects
motion from round 2 to maximal round R.

method [29] for fast, reliable motion correction of quantitative cardiac MRI. Our
main contributions are:

1. We propose a novel groupwise image registration framework, which is, to
the best of our knowledge, the first attempt to utilize rPCA in groupwise
registration with a deep learning backbone. This generic framework can be
integrated with any existing registration methods, either classical optimiza-
tion or modern deep learning methods.

2. We evaluated and demonstrated the generalizability of our contrast-agnostic
method on out-of-domain quantitative MRI sequences.

3. We further investigated the fitness of two popular metrics, NCC and NMI,
for groupwise registration. We showed empirically that NCC could give rise
to registration artefacts, leading to unwanted anatomical deformation.

2 Methods

2.1 Problem Formulation

Given a sequence of baseline images IN = {Ii ∈ RH×W |i = 1, ..., N}, the goal
of groupwise registration is to align all Ii into one common coordinate system
by obtaining a set of deformation fields TN = {Ti ∈ R2×H×W ; i = 1, ..., N}. An

implicit reference Iref = 1
N

∑N
n=1(Tn◦In) is generated for groupwise registration.
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Fig. 2. Decomposition of pre-contrast MOLLI cardiac time-series images using rPCA.
Each MOLLI sequence consists of 11 pre-contrast time frames in our setting. SI denotes
signal intensity. The intensity inconsistency of the sequence is mitigated in the low-rank
component of rPCA.

Therefore, each Ti should align the anatomical structures in Ii to those in the
implicit reference Iref .

The proposed rPCA framework is as follows: rPCA first decomposes the in-
put baseline images IN into the low-rank matrix LN and sparse matrix SN . The
low-rank component is fed to the deep learning backbone to learn the deforma-
tion field TN . Then TN is applied to the input IN to obtain warped images
TN ◦ IN , which serves as the input of the next iteration of rPCA, until the max-
imal iteration number is reached. The framework then progressively corrects the
motion in the original input, but for each iteration, rPCA enables us to work
only on the low-rank part, which is easier to register than the original input.
This rationale will be revisited later in the paper. The diagram of our proposed
framework is shown in Figure 1.

2.2 Robust Principal Component Analysis

Robust principal component analysis (rPCA) [6], as its name suggests, is a robust
version of PCA for matrix decomposition: For a given data matrix M , where in
our caseM is the matrix of vectorized grouped images IN , the rPCA decomposes
M ∈ Rm×n into the sum of a low-rank matrix L and a sparse matrix S via solving
the following optimization problem:

minimize ∥L∥∗ + λ∥S∥1, subject to L+ S = M, (1)

where ∥ · ∥∗ denotes the nuclear norm, ∥ · ∥1 denotes the l1 norm, and λ is
a hyperparameter trading off the two components, which is often set by de-
fault as λ = 1/

√
max (m,n). Such optimization problems can be solved by well-

established algorithms, such as proximal gradient descent methods [11].
An illustration of rPCA on pre-contrast cardiac MRI is shown in Figure 2. It

can be seen that the sparse matrix captures abrupt changes in baseline images,
either of contrast (such as in I2) or motion (such as in I7), which are usually
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more difficult to handle by registration algorithms. The low-rank matrix, in con-
trast, consists of the components in baseline images which have relatively lower
variations and are easier to align. Note that the amplitude of the sparse compo-
nent is much lower than that of the low-rank component, the latter capturing
the majority of information in the original matrix.

2.3 Loss Functions

The optimization problem for finding the deformable mapping TN can be for-
mulated as follows:

TN = argmin
TN

Lsimilarity + λ0Lsmooth + λ1Lcyclic, (2)

where Lsimilarity, Lsmooth, and Lcyclic denote similarity function, smoothness reg-
ularization, and cyclic consistency, with weight parameters λ0 and λ1.
Similarity Functions:We employed the normalized mutual information (NMI)
to measure the similarity between the input images IN to the warped images
TN ◦ IN , which can measure alignment in the face of contrast changes [27]. The
NMI between two images is defined as:

NMI(I1, I2) =
2MI(I1, I2)

H(I1) +H(I2)
, (3)

where MI(I1, I2) denotes the mutual information between I1 and I2, H(I1) is
the entropy of image I1, and H(I2) for image I2, respectively. For groupwise
registration, the similarity loss Lsimilarity is then defined as:

Lsimilarity = − 1

N

N∑
n=1

NMI(Tn ◦ In, Iref ). (4)

Another popular similarity loss is also considered and discussed, which is the
local normalized cross-correlation (NCC) [3], defined as

NCC(I1, I2) =
1

H ×W

∑
i,j∈H,W

∑
x∈Ω(I1(x)− Ī1(i, j))(I2(x)− Ī2(i, j))√

Î1(i, j)Î2(i, j)
, (5)

where H and W corresponds to the height and width of the image, Ω indicates
the neighborhood voxels around the voxel at position (i, j) and Ī(i, j) and Î(i, j)
denote the local mean and variance.
Smoothness Regularization: The smoothness of the deformation field is reg-
ularized through B-spline registration [25]. We adopted B-spline because it can
prevent the image from folding and inherently lead to smooth deformation fields:

Lsmooth =
1

H ×W

N∑
n=1

∫ H

0

∫ W

0

(∂2T̂n

∂x2

)2

+

(
∂2T̂n

∂y2

)2

+ 2

(
∂2T̂n

∂xy

)2
 dxdy,

(6)
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where T̂n = Tn +
∑k

l=0

∑k
m=0 Bl(u)Bm(v)ϕi+l,j+m, and Bl is the l−th B-spline

basis function, k is the order of B-spline, and ϕi,j denotes the control points
with uniform space across the image. B-Spline control points will affect the
surrounding deformation fields based on the kernel function.
Cyclic Consistency: For groupwise registration, the cyclic consistent regular-
ization keeps the estimated implicit reference at the center of all baseline images
in the manifold by minimizing the deformation field to the implicit reference
[29]:

Lcyclic(T
N ) =

√√√√ 1

2(H ×W )

∑
i,j∈H,W

(∑
n

Tn(i, j)

)2

, (7)

where Tn(i, j) denotes the value of Tn at coordinate (i, j). This term prevents
the degenerated solution where textures in all images collapse.

2.4 CNN-based Neural Network Architecture

The convolution neural network architecture follows that of the VoxelMorph
[4], and GroupRegNet [29], based on the UNet [23] architecture consisting of
encoding and decoding layers with skip connection. Both encoder and decoder
use convolutional blocks consisting of a 2D convolution and a Leaky ReLU ac-
tivation function. The encoder captures the hierarchical features of the input
images with multiple convolution blocks. The number of decoder layers was con-
trolled by the B-spline kernel size k [23]. The larger kernel size indicates less
decode layers, which makes the deformation field more homogeneous. This en-
ables the coarse-to-fine representation of the two-channel deformation field. The
final deformation field is computed by B-spline free form deformation (FFD)
transformation model [25] based on the decoder output.

2.5 Evaluation Methods

T1 fitting error: In this paper, we used myocardial T1 mapping by the modi-
fied Look Locker inversion recovery sequence (MOLLI), one of the most widely
used mapping modalities in clinical practice [22]. T1 mapping follows a three-
parameter model, expressed by

y(TI) = A−Be−TI/T
∗
1 , (8)

where y denotes the signal intensity, TI denotes the inversion time for acquisi-
tion of each baseline image, and A, B, and T1∗ are parameters to be estimated.
Since motion correction leads to a better fitting of this MR physics model at
each pixel, here we measure the performance through the T1 mapping within
the ROI (myocardium and left ventricle) and the standard deviation (SD) er-
ror [18] as an indication of the fitting error. A lower SD error indicates better
motion correction. We used both the native (pre-contrast) T1 mapping and post-
contrast T1 mapping sequences (after Gadolinium administration). To test the
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generalizability of our framework, we trained our NN exclusively on pre-contrast
T1 mapping, while testing it on both pre-contrast (in-domain) and post-contrast
(out-of-domain) sequences.
Dissimilarity metrics DPCA: We evaluate the warped images using DPCA,
the ratio of the top-K eigenvalues to the sum of eigenvalues of the correlation
matrix [17]. The higher the ratio, the better the performance of registration.
Baseline methods: We compared our proposed framework with two methods:
(1) the conventional groupwise method, Elastix-PCA [17], and (2) the group-
wise registration method [29] without rPCA, denoted by GroupRegNet∗, which-
follows [29], but using NMI as the optimization metric. We also performed ex-
periments on GroupRegNet∗ using the NCC metric as in the original work and
compared the results with NMI.

3 Experiments and Results

Dataset: We used a cardiac MRI dataset including 48 subject, with both pre-
contrast and post-contrast MOLLI sequences (Philips 3.0T). Each subject had
1 to 3 slices acquired at the base, mid-ventricular, and apex levels. In total 120
pre-contrast and 120 post-contrast MOLLI sequences were included. All images
were resampled to a 224×224×11 grid with 1mm3 isotropic resolution and then
cropped to 112 × 112 × 11 at the center. The training comprised 100 random
images from only the pre-contrast MOLLI sequences. The rest 20 pre-contrast
MOLLI sequences and their corresponding post-contrast sequences, in total 40,
formed the test set. We note here that the pre-contrast sequences are the in-
domain test data, while the post-contrast sequences are the out-of-domain test
data, given their contrast changes follow a different pattern governed by much
higher relaxation rate due to the contrast agent (e.g. lower T1).

Table 1. Experiment results on T1 mapping. We compare T1 SD and DPCA(K = 1)
before and after registration. A higher DPCA(K = 1) indicates larger power in the
princinple components thus better alignment. The SD measures the T1 fitting error
within the ROI. Lower SD indicates lower fitting error thus better alignment. Our
method (w/ rPCA) outperforms the GroupRegNet∗ on both pre-contrast and post-
contrast data in terms of both SD and DPCA. The bold values demonstrates the best
result and underlined values is the second highest performance for each metric.

Modality Method SD(ms)↓ DPCA%↑ Time(s)

Pre-GD
Elastix-PCA 54.5±21.7 93.9 ≈ 600

GroupRegNet∗ 55.4±21.4 94.0 1.28
Ours (w/ rPCA) 53.9±21.9 94.4 7.11

Post-GD
Elastix-PCA 21.5±16.1 91.7 ≈ 600

GroupRegNet∗ 24.5±13.3 81.5 1.28
Ours (w/ rPCA) 21.8±12.5 92.1 7.11
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Fig. 3. Representative figures of the quantitative CMR. The figure demonstrated the
T1 map (top row) and SD map (bottom row) of the same subject on both pre- and
post-contrast. We compared our proposed method with conventional method (Elastix-
PCA) and deep learning based GroupRegNet, and the reported average SD within the
ROI indicated that our method outperformed others.

Implementation Details: Robust PCA was implemented with the GoDec al-
gorithm [30]. In each round, the rank of L was set to be half of the sequence
length, which was 5 in our case. Empirically we applied a decoder with 4 layers.
In this case, the decoder included 2 convolution blocks and the output deforma-
tion field was 31 × 31 × 11 × 2. The final deformation field was transformed to
112× 112× 11× 2 using B-spline FFD. The smooth regulation’s weight λ0 is set
to 0.001 and cyclic regulation’s weight λ1 is set to 0.01 empirically.
Choice of Similarity Functions: Two similarity functions, NCC and NMI,
are evaluated. We observed that NCC loss led to undesirable deformation as well
as altered distribution of the T1 values (details in Supplementary). As suggested
in [27], NCC naturally favors homogeneous distribution of pixel intensities and
lead to over-smooth myocardium textures that fail the purpose of quantitative
mapping, while NMI maintained the shape and texture of the ROI.

Results: The quantitative results of registration and quantitative mapping are
shown in Table 1 and two representative figures are shown in Figure 3. Note
that to demonstrate the generalizability of the learned model, we train the model
only on pre-contrast data (denoted as Pre-Gd) and tested on both pre- and post-
contrast data. Our method performs best on pre-contrast datasets according to
SD within the ROI and outperforms the GroupRegNet∗ on post-contrast data.
Elastix-PCA gives slightly better performance on post-contrast data because the
optimization is per datasets (no training and inference). However, it takes around
10 minutes for each subject, which is much slower compared to our method, with
an average inference time of 7.1 s per sequence.

4 Conclusion

In conclusion, we proposed a novel rPCA framework for robust motion correction
of quantitative cardiac MRI. We aim for robust performance despite agnostic
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image contrast changes, which are typical of quantitative MRI. We showed that
the introduction of rPCA, which separates low-rank and sparse components of
baseline images, led to improved registration performance and facilitated the
generalization of the trained network on out-of-domain data.

In addition, our work also compared the two commonly used metrics for
groupwise registration, namely, NCC and NMI, and showed that NCC might
give rise to potential loss-specific artifacts in heart anatomy and quantitative
mapping. Future investigations are warranted to focus not only on the perfor-
mance of image registration but also on the fidelity of quantitative mapping.
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Fig. 4. We compared two metrics (normalized cross correlation and normalized mutual
information) by training on the same training data and checked the result after regis-
tration and parametric fitting. Left panel (a) shows an exemplar case of the original
and registered images using NCC (middle) and NMI (right). The second row shows
the resulting T1 map. Right panel (b) shows the correlation and Bland-Altman plot
of the quantitative T1 estimation within the myocardium ROI. Red arrows in (a, top
row) point to the potential deformation artifact of the NCC-guided registration, in
the form of implausible anatomical deformation and biased T1 estimation (b). Green
arrows in (a, bottom row) indicated the corresponding changes of anatomical pattern
in T1 maps.
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