Skip to main content

Characterization of Household Electricity Consumption in Uruguay

  • Conference paper
  • First Online:
Smart Cities (ICSC-Cities 2023)

Abstract

This article presents a study to characterize the electricity consumption in residential buildings in Uruguay. Understanding residential electricity consumption is a relevant concept to identify factors that influence electricity usage, and allows developing specific and custom energy efficiency policies. The study focuses on two home appliances: air conditioner and water heater, which represents a large share of the electricity consumption of Uruguayan households. A data-analysis approach is applied to process several data sources and compute relevant indicators. Statistical methods are applied to study the relationships between different relevant variables, including appliance ownership, average income of households, and temperature, and the residential electricity consumption. A specific application of the data analysis is presented: a regression model to determine the consumption patterns of water heaters in households. Results show that the proposed approach is able to compute good values for precision, recall and F1-score and an excellent value for accuracy (0.92). These results are very promising for conducting an economic analysis that takes into account the investment cost of remotely controlling water heaters and the benefits derived from managing their demand.

This research was developed within a joint research project between Universidad de la república, the National Supercomputing Centar (Cluster-UY), and the national electricity company UTE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, R., Sreeram, V., Mishra, Y., Arif, M.: A review and evaluation of the state-of-the-art in PV solar power forecasting: techniques and optimization. Renew. Sustain. Energy Rev. 124, 109792 (2020). https://doi.org/10.1016/j.rser.2020.109792

    Article  Google Scholar 

  2. Alkhayat, G., Mehmood, R.: A review and taxonomy of wind and solar energy forecasting methods based on deep learning. Energy AI 4, 100060 (2021). https://doi.org/10.1016/j.egyai.2021.100060

    Article  Google Scholar 

  3. Amayri, M., Silva, C., Pombeiro, H., Ploix, S.: Flexibility characterization of residential electricity consumption: a machine learning approach. Sustain. Energy, Grids Netw. 32, 100801 (2022). https://doi.org/10.1016/j.segan.2022.100801

    Article  Google Scholar 

  4. Chavat, J., Nesmachnow, S.: Analysis of residential electricity consumption by areas in Uruguay. In: Nesmachnow, S., Hernández Callejo, L. (eds.) ICSC-CITIES 2020. CCIS, vol. 1359, pp. 42–57. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-69136-3_4

    Chapter  Google Scholar 

  5. Chavat, J., Nesmachnow, S., Graneri, J.: Non-intrusive energy disaggregation by detecting similarities in consumption patterns. Revista Facultad de Ingeniería Universidad de Antioquia (2020). https://doi.org/10.17533/udea.redin.20200370

  6. Chavat, J., Nesmachnow, S., Graneri, J., Alvez, G.: ECD-UY, detailed household electricity consumption dataset of Uruguay. Scientific Data 9(1) (2022). https://doi.org/10.1038/s41597-022-01122-x

  7. Chen, C., Duan, S., Cai, T., Liu, B.: Online 24-h solar power forecasting based on weather type classification using artificial neural network. Sol. Energy 85(11), 2856–2870 (2011). https://doi.org/10.1016/j.solener.2011.08.027

    Article  Google Scholar 

  8. Chupong, C., Plangklang, B.: Forecasting power output of PV grid connected system in Thailand without using solar radiation measurement. Energy Procedia 9, 230–237 (2011). https://doi.org/10.1016/j.egypro.2011.09.024

    Article  Google Scholar 

  9. Ding, M., Wang, L., Bi, R.: An ANN-based approach for forecasting the power output of photovoltaic system. Procedia Environ. Sci. 11, 1308–1315 (2011). https://doi.org/10.1016/j.proenv.2011.12.196

    Article  Google Scholar 

  10. Energy Information Administration: international energy outlook (2021). https://www.eia.gov/outlooks/ieo/tables_side_xls.php. Accessed 3 July 2023. Washington, DC: U.S. EIA

  11. Esteban, M., Fiori, I., Mujica, M., Nesmachnow, S.: Computational intelligence for characterization and disaggregation of residential electricity consumption. In: Nesmachnow, S., Hernández Callejo, L. (eds.) ICSC-CITIES 2020. CCIS, vol. 1359, pp. 58–73. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-69136-3_5

    Chapter  Google Scholar 

  12. Fraccanabbia, N., Gomes, R., Molin, M.D., Rodrigues, S., dos Santos, L., Cocco, V.: Solar power forecasting based on ensemble learning methods. In: International Joint Conference on Neural Networks. IEEE (2020). https://doi.org/10.1109/ijcnn48605.2020.9206777

  13. Iheanetu, K.: Solar photovoltaic power forecasting: a review. Sustainability 14(24), 17005 (2022). https://doi.org/10.3390/su142417005

    Article  Google Scholar 

  14. Liu, H., Liang, J., Liu, Y., Wu, H.: A review of data-driven building energy prediction. Buildings 13(2), 532 (2023). https://doi.org/10.3390/buildings13020532

    Article  Google Scholar 

  15. Massobrio, R., Nesmachnow, S.: Urban mobility data analysis for public transportation systems: a case study in Montevideo. Uruguay Appl. Sci. 10(16), 5400 (2020). https://doi.org/10.3390/app10165400

    Article  Google Scholar 

  16. Muraña, J., et al.: Negotiation approach for the participation of datacenters and supercomputing facilities in smart electricity markets. Program. Comput. Softw. 46(8), 636–651 (2020). https://doi.org/10.1134/s0361768820080150

    Article  MathSciNet  Google Scholar 

  17. Muraña, J., Nesmachnow, S.: Simulation and evaluation of multicriteria planning heuristics for demand response in datacenters. SIMULATION 99(3), 003754972110200 (2021). https://doi.org/10.1177/00375497211020083

    Article  Google Scholar 

  18. Nesmachnow, S., Iturriaga, S.: Cluster-UY: collaborative scientific high performance computing in Uruguay. In: Torres, M., Klapp, J. (eds.) ISUM 2019. CCIS, vol. 1151, pp. 188–202. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-38043-4_16

    Chapter  Google Scholar 

  19. Pedro, H., Coimbra, C.: Assessment of forecasting techniques for solar power production with no exogenous inputs. Sol. Energy 86(7), 2017–2028 (2012). https://doi.org/10.1016/j.solener.2012.04.004

    Article  Google Scholar 

  20. Porteiro, R., Chavat, J., Nesmachnow, S.: A thermal discomfort index for demand response control in residential water heaters. Appl. Sci. 11(21), 10048 (2021). https://doi.org/10.3390/app112110048

    Article  Google Scholar 

  21. Porteiro, R., Chavat, J., Nesmachnow, S., Hernández-Callejo, L.: Demand response control in electric water heaters: evaluation of impact on thermal comfort. In: Nesmachnow, S., Hernández Callejo, L. (eds.) ICSC-CITIES 2020. CCIS, vol. 1359, pp. 74–89. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-69136-3_6

    Chapter  Google Scholar 

  22. Porteiro, R., Hernández-Callejo, L., Nesmachnow, S.: Electricity demand forecasting in industrial and residential facilities using ensemble machine learning. Revista Facultad de Ingeniería Universidad de Antioquia 102, 9–25 (2020). https://doi.org/10.17533/udea.redin.20200584

  23. Porteiro, R., Nesmachnow, S., Hernández-Callejo, L.: Short term load forecasting of industrial electricity using machine learning. In: Nesmachnow, S., Hernández Callejo, L. (eds.) ICSC-CITIES 2019. CCIS, vol. 1152, pp. 146–161. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38889-8_12

    Chapter  Google Scholar 

  24. Porteiro, R., Nesmachnow, S., Moreno-Bernal, P., Torres-Aguilar, C.E.: Computational intelligence for residential electricity consumption assessment: detecting air conditioner use in households. Sustain. Energy Technol. Assess. 58, 103319 (2023). https://doi.org/10.1016/j.seta.2023.103319

    Article  Google Scholar 

  25. Theocharides, S., Alonso, R., Giacosa, G., Makrides, G., Theristis, M., Georghiou, G.: Intra-hour forecasting for a 50 MW photovoltaic system in Uruguay: baseline approach. In: IEEE 46\(^th\) Photovoltaic Specialists Conference. IEEE (2019). https://doi.org/10.1109/pvsc40753.2019.8980756

  26. Zang, H., Cheng, L., Ding, T., Cheung, K.W., Wei, Z., Sun, G.: Day-ahead photovoltaic power forecasting approach based on deep convolutional neural networks and meta learning. Int. J. Electr. Power Energy Syst. 118, 105790 (2020). https://doi.org/10.1016/j.ijepes.2019.105790

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Nesmachnow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Llagueiro, P., Porteiro, R., Nesmachnow, S. (2024). Characterization of Household Electricity Consumption in Uruguay. In: Nesmachnow, S., Hernández Callejo, L. (eds) Smart Cities. ICSC-Cities 2023. Communications in Computer and Information Science, vol 1938. Springer, Cham. https://doi.org/10.1007/978-3-031-52517-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52517-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52516-2

  • Online ISBN: 978-3-031-52517-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics