Skip to main content

Reachability Analysis to Track Non-cooperative Satellite in Cislunar Regime

  • Conference paper
  • First Online:
Dynamic Data Driven Applications Systems (DDDAS 2022)

Abstract

Space Domain Awareness (SDA) architectures must adapt to overcome the challenges present in cislunar space. Dynamical systems theory provides tools which may be leveraged to address some of the many challenges associated with cislunar space. The PSS is an analysis tool used to reduce dimensionality and help study the properties of the system flow. Invariant manifolds have been combined with the PSS to prescribe trajectories through various cislunar regimes by other researchers. In this work, the PSS and the invariant manifolds are used to pose a set of boundary value problems which define the \(\Delta \textbf{v}\) from a nominal \(L_2\) Lyapunov orbit through the PSS. By approximating the solutions through the PSS, the admissible controls onto these highways are approximated. One viable use for this formulation of a reduced reachable set will allow an SDA operator to intelligently task sensors to regain custody of a maneuver spacecraft. This paper examine uses concepts of a admissible region to intelligently reduce the reachability set for maneuver spacecraft and studies the efficacy for multiple maneuver windows and the affects of various user set parameters.

This material is based upon work supported jointly by the AFOSR grant FA9550-20-1-0176, FA9550-22-1-0092, as well as the DoD SMART Scholarship Program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The future of space 2060 & implications for U.S. strategy: report on the space futures workshop, Tech. rep., Air Force Space Command (2019)

    Google Scholar 

  2. Holzinger, M.J., Chow, C.C., Garretson, P.: A Primer on Cislunar Space. White Paper 2021–1271. AFRL (2021)

    Google Scholar 

  3. Perkins, J.: AFRL’s Cislunar Highway Patrol System Seeks Industry Collaboration (2022)

    Google Scholar 

  4. Hall, Z., Singla, P., Johnson, K.: A particle filtering approach to space-based maneuvering satellite location and estimation. In: AAS Astrodynamics Specialist Conference (2020)

    Google Scholar 

  5. Hall, Z., et al.: Reachability-based approach for search and detection of maneuvering cislunar objects. In: AIAA SCITECH 2022 Forum. AIAA SciTech Forum. San Diego, CA & Virtual: American Institute of Aeronautics and Astronautics (2022). https://doi.org/10.2514/6.2022-0853

  6. Tommei, G., Milani, A., Rossi, A.: Orbit determination of space debris: admissible regions. Celest. Mech. Dyn. Astron. 97(4), 289–304 (2007). https://doi.org/10.1007/s10569-007-9065-x

    Article  MathSciNet  Google Scholar 

  7. Fujimoto, K., Scheeres, D.J.: Applications of the admissible region to space-based observations. Adv. Space Res. 52(4), 696–704 (2013). https://doi.org/10.1016/j.asr.2013.04.020

  8. Schwab, D., Eapen, R., Singla, P.: Approximating admissible control onto the cislunar highways for detection and tracking of spacecraft. In: 2022 AAS/AIAA Astrodynamics Specialist Conference. Charlotte, North Carolina (2022)

    Google Scholar 

  9. Villac, B.F., Scheeres, D.J.: Escaping trajectories in the hill three-body problem and applications. J. Guidance Control Dyn. 26(2), 224–232 (2003). https://doi.org/10.2514/2.5062

    Article  Google Scholar 

  10. Wang S.K., et al.: Dynamical Systems, the Three-Body Problem and Space Mission Design. Chapter 7: Invariant manifolds and end to end transfer. Useful information for trajectory planning. Marsden Books (2011). ISBN: 978-0-615-24095-4

    Google Scholar 

  11. Ohtsuka, T., Fujii, H.: Stabilized continuation method for solving optimal control problems. J. Guidance Control Dyn. 17(5), 950–957 (1994). https://doi.org/10.2514/3.21295

    Article  Google Scholar 

  12. Vedantam, M., Akella, M.R., Grant, M.J.: Multi-stage stabilized continuation for indirect optimal control of hypersonic trajectories. In: AIAA Scitech 2020 Forum. Orlando, FL: American Institute of Aeronautics and Astronautics (2020). ISBN: 978-1-62410-595-1. https://doi.org/10.2514/6.2020-0472

  13. Bolden, M., Craychee, T., Griggs, E.: An evaluation of observing constellation orbit stability, low signal-to-noise, and the too-short-arc challenges in the cislunar domain. In: Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS). Maui, HI (2020)

    Google Scholar 

  14. Hall, Z., Singla, P.: Reachability analysis based tracking: applications to non-cooperative space object tracking. In: Darema, F., Blasch, E., Ravela, S., Aved, A. (eds.) DDDAS 2020. LNCS, vol. 12312, pp. 200–207. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61725-7_24

    Chapter  Google Scholar 

  15. Hall, Z.: A probabilistic framework to locate and track maneuvering satellites, Ph. D. thesis, University Park, PA: The Pennsylvania State University (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Schwab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schwab, D., Eapen, R., Singla, P. (2024). Reachability Analysis to Track Non-cooperative Satellite in Cislunar Regime. In: Blasch, E., Darema, F., Aved, A. (eds) Dynamic Data Driven Applications Systems. DDDAS 2022. Lecture Notes in Computer Science, vol 13984. Springer, Cham. https://doi.org/10.1007/978-3-031-52670-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52670-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52669-5

  • Online ISBN: 978-3-031-52670-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics