Skip to main content

Physics-Aware Machine Learning for Dynamic, Data-Driven Radar Target Recognition

  • Conference paper
  • First Online:
Dynamic Data Driven Applications Systems (DDDAS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13984))

Included in the following conference series:

  • 493 Accesses

Abstract

Despite advances in Artificial Intelligence and Machine Learning (AI/ML) for automatic target recognition (ATR) using surveillance radar, there remain significant challenges to robust and accurate perception in operational environments. Physics-aware ML is an emerging field that strives to integrate physics-based models with data-driven deep learning (DL) to reap the benefits of both approaches. Physics-based models allow for the prediction of the expected radar return given any sensor position, observation angle and environmental scene. However, no model is perfect and the dynamic nature of the sensing environment ensures that there will always be some part of the signal that is unknown, which can be modeled as noise, bias or error uncertainty. Physics-aware machine learning combines the strengths of DL and physics-based modeling to optimize trade-offs between prior versus new knowledge, models vs. data, uncertainty, complexity, and computation time, for greater accuracy and robustness. This paper addresses the challenge of designing physics-aware synthetic data generation techniques for training deep models for ATR. In particular, physics-based methods for data synthesis, the limitations of current generative adversarial network (GAN)-based methods, new ways domain knowledge may be integrated for new GAN architectures and domain adaptation of signatures from different, but related sources of RF data, are presented. The use of a physics-aware loss term with a multi-branch GAN (MBGAN) resulted in a 9% improvement in classification accuracy over that attained with the use of real data alone, and a 6% improvement over that given using data generated by a Wasserstein GAN with gradient penalty. The implications for DL-based ATR in Dynamic Data-Driven Application Systems (DDDAS) due to fully-adaptive transmissions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blasch, E., Seetharaman, G., Darema, F.: Dynamic data driven applications systems (DDDAS) modeling for automatic target recognition. In: Proceedings SPIE, vol. 8744 (2013)

    Google Scholar 

  2. Ahmadibeni, A., Jones, B., Smith, D., Shirkhodaie, A.: Dynamic transfer learning from physics-based simulated SAR imagery for automatic target recognition. In: Darema, F., Blasch, E., Ravela, S., Aved, A. (eds.) DDDAS 2020. LNCS, vol. 12312, pp. 152–159. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61725-7_19

    Chapter  Google Scholar 

  3. Metaxas, D., Kanaujia, A., Li, Z.: Dynamic tracking of facial expressions using adaptive, overlapping subspaces. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007. LNCS, vol. 4487, pp. 1114–1121. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72584-8_146

    Chapter  Google Scholar 

  4. Chen, R.T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D.: Neural ordinary differential equations. In: Proceedings of the 32nd International Conference on NIPS, Red hook, NY, USA, pp. 6572–6583 (2018)

    Google Scholar 

  5. Raissi, M., Perdikaris, P., Karniadakis, G.: Physics-informed neural networks: a deep learning framework for solving inverse forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    Article  MathSciNet  Google Scholar 

  6. Chen, Z., Liu, Y., Sun, H.: Deep learning of physical laws from scarce data. arXiv, abs/2005.03448 (2020)

    Google Scholar 

  7. De Oliveria, L., Paganini, M., Nachman, B.: Learning particle physics by example: location-aware generative adversarial networks for physics synthesis. Comput. Softw. Big Sci. 1(1), (2017). https://link.springer.com/article/10.1007/s41781-017-0004-6

  8. Yang, Y., Perdikaris, P.: Adversarial uncertainty quantification in physics-informed neural networks. J. Comput. Phys. 394, 136–152 (2019)

    Article  MathSciNet  Google Scholar 

  9. Yang, Z., Wu, J., Xiao, H.: Enforcing imprecise constraints on generative adversarial networks for emulating systems. Commun. Comput. Phys. 30, 635–665 (2021)

    Article  MathSciNet  Google Scholar 

  10. Wu, J., Kashinath, K., Albert, A., Chirila, D.B., Prabhat, Xiao, H.: Enforcing statistical constraints in generative adversarial networks for modeling chaotic dynamical systems. J. Comput. Phys. 406, 109–209 (2020)

    Article  MathSciNet  Google Scholar 

  11. Ram, S.S., Gurbuz, S.Z., Chen, V.C.: Modeling and simulation of human motions for micro-Doppler signatures. In: Amin, M. (ed.) Radar for In-Door Monitoring: Detection, Classification, and Assessment, CRC Press (2017)

    Google Scholar 

  12. Blasch, E., Majumder, U., Minardi, M.: Radar signals dismount tracking for urban operations. In: Proceedings of SPIE, vol. 6235, May (2006)

    Google Scholar 

  13. Majumder, U. Minardi, M., Blasch, E., Gorham, L., Naidu, K., Lewis, T., et al.: Radar signals dismount data production. In: Proceedings of SPIE, vol. 6237 (2006)

    Google Scholar 

  14. Ram, S.S., Ling, H.: Simulation of human micro-Dopplers using computer animation data. In: Proceedings IEEE Radar Conference (2008)

    Google Scholar 

  15. Erol, B., Gurbuz, S.Z.: A kinect-based human micro-doppler simulator. IEEE Aerosp. Electron. Syst. Mag. 30(5), 6–17 (2015)

    Article  Google Scholar 

  16. Passafiume, M., Rojhani, N., Collodi, G., Cidronali, A.: Modeling small UAV micro-Doppler signature using millimeter-wave FMCW radar. Electronics 10(6), 747 (2021)

    Article  Google Scholar 

  17. Moore, M., Robertson, D.A., Rahman, S.: Simulating UAV micro-Doppler using dynamic point clouds. In: Proceedings IEEE Radar Conference, pp. 1–6 (2022)

    Google Scholar 

  18. Boulic, R., Magnenat-Thalmann, N., Thalmann, D.: A global human walking model with real-time kinematic personification. Vis. Comput. 6, 344–358 (2005)

    Article  Google Scholar 

  19. Van Dorp, P., Groen, F.C.A.: Human walking estimation with radar. IEE Proc. Radar Sonar Navigation 150(5), 356–365 (2003)

    Article  Google Scholar 

  20. Seyfioglu, M.S., Erol, B., Gurbuz, S.Z., Amin, M.: DNN transfer learning from diversified micro-Doppler for motion classification. IEEE TAES 55(5), 2164–2180 (2019)

    Google Scholar 

  21. Erol, B., Amin, M.B., Gurbuz, S.Z.: Automatic data-driven frequency-warped cepstral feature design for micro-Doppler classification. IEEE Trans. Aerosp. Electron. Syst. 54(4), 1724–1738 (2018)

    Article  Google Scholar 

  22. Shrivastava A., et al.: Learning from simulated and un-supervised images through adversarial training. In: IEEE Proceedings of the CVPR, pp. 2242–2251 (2017)

    Google Scholar 

  23. Wang, M., Deng, W.: Deep visual domain adaptation: a survey. Neurocomputing 312, 135–153 (2018)

    Article  Google Scholar 

  24. Gurbuz S, et al.: Cross-frequency training with adversarial learning for radar micro-Doppler signature classification. In: Proceedings of the SPIE, vol. 11408, pp. 1–11 (2020)

    Google Scholar 

  25. Gurbuz, S.Z., Rahman, M.M., Kurtoglu, E., et al.: Multi-frequency RF sensor fusion for word-level fluent ASL recognition. IEEE Sens. J. 22, 11373–11381 (2021)

    Article  Google Scholar 

  26. Erol, B., Gurbuz, S.Z., Amin, M.G.: Motion classification using kinematically sifted ACGAN-synthesized radar micro-Doppler signatures. IEEE Trans. Aerosp. Electron. Syst. 56(4), 3197–3213 (2020)

    Article  Google Scholar 

  27. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time series. In: KDD Workshop, Seattle, WA (1994)

    Google Scholar 

  28. Kurtoğlu, E., Gurbuz, A.C., Malaia, E.A., Griffin, D., Crawford, C., Gurbuz, S.Z.: ASL trigger recognition in mixed activity/signing sequences for RF sensor-based user inter-faces. IEEE Trans. Hum.-Mach. Syst. 52(4), 699–712 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported AFOSR Award #FA9550-22-1-0384.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sevgi Zubeyde Gurbuz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gurbuz, S.Z. (2024). Physics-Aware Machine Learning for Dynamic, Data-Driven Radar Target Recognition. In: Blasch, E., Darema, F., Aved, A. (eds) Dynamic Data Driven Applications Systems. DDDAS 2022. Lecture Notes in Computer Science, vol 13984. Springer, Cham. https://doi.org/10.1007/978-3-031-52670-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52670-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52669-5

  • Online ISBN: 978-3-031-52670-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics