Abstract
Passive radio frequency (PRF)-based indoor positioning systems (IPS) have attracted researchers’ attention due to their low price, easy and customizable configuration, and non-invasive design. This paper proposes a PRF-based three-dimensional (3D) indoor positioning system (PIPS), which is able to use signals of opportunity (SoOP) for positioning and also capture a scenario signature. PIPS passively monitors SoOPs containing scenario signatures through a single receiver. Moreover, PIPS leverages the Dynamic Data Driven Applications System (DDDAS) framework to devise and customize the sampling frequency, enabling the system to use the most impacted frequency band as the rated frequency band. Various regression methods within three ensemble learning strategies are used to train and predict the receiver position. The PRF spectrum of 60 positions is collected in the experimental scenario, and three criteria are applied to evaluate the performance of PIPS. Experimental results show that the proposed PIPS possesses the advantages of high accuracy, configurability, and robustness.
Supported by Air Force Office of Scientific Research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Moghtadaiee, V., Dempster, A.G.: Indoor location fingerprinting using FM radio signals. IEEE Trans. Broadcast. 60(2), 336–346 (2014)
Souli, N., Makrigiorgis, R., Kolios, P., Ellinas, G.: Real-time relative positioning system implementation employing signals of opportunity, inertial, and optical flow modalities. In: 2021 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 229–236. IEEE, Athens (2021)
Plale, B., et al.: Towards dynamically adaptive weather analysis and forecasting in LEAD. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J.J. (eds.) ICCS 2005. LNCS, vol. 3515, pp. 624–631. Springer, Heidelberg (2005). https://doi.org/10.1007/11428848_81
Patra, A.K., et al.: Challenges in developing DDDAS based methodology for volcanic ash hazard analysis - effect of numerical weather prediction variability and parameter estimation. Procedia Comput. Sci. 18, 1871–1880 (2013)
Michopoulos, J., Tsompanopoulou, P., Houstis, E., Joshi, A.: Agent-based simulation of data-driven fire propagation dynamics. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3038, pp. 732–739. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24688-6_95
Allaire, D., et al.: An offline/online DDDAS capability for self-aware aerospace vehicles. Procedia Comput. Sci. 18, 1959–1968 (2013)
Kopsaftopoulos, F., Chang, F.-K.: A dynamic data-driven stochastic state-awareness framework for the next generation of bio-inspired fly-by-feel aerospace vehicles. In: Blasch, E.P., Darema, F., Ravela, S., Aved, A.J. (eds.) Handbook of Dynamic Data Driven Applications Systems, pp. 713–738. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-74568-4_31
Yan, H., Zhang, Z., Zou, J.: Dynamic space-time model for syndromic surveillance with particle filters and Dirichlet process. In: Blasch, E., Ravela, S., Aved, A. (eds.) Handbook of Dynamic Data Driven Applications Systems, pp. 139–152. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95504-9_7
Neal, S., Fujimoto, R., Hunter, M.: Energy consumption of data driven traffic simulations. In: 2016 Winter Simulation Conference (WSC), pp. 1119–1130. IEEE (2016)
Mulani, S.B., Roy, S., Jony, B.: Uncertainty analysis of self-healed composites with machine learning as part of DDDAS. In: Darema, F., Blasch, E., Ravela, S., Aved, A. (eds.) DDDAS 2020. LNCS, vol. 12312, pp. 113–120. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61725-7_15
Damgacioglu, H., Celik, E., Yuan, C., Celik, N.: Dynamic data driven application systems for identification of biomarkers in DNA methylation. In: Blasch, E.P., Darema, F., Ravela, S., Aved, A.J. (eds.) Handbook of Dynamic Data Driven Applications Systems, pp. 241–261. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-74568-4_12
Blasch, E., Aved, A., Bhattacharyya, S.S.: Dynamic data driven application systems (DDDAS) for multimedia content analysis. In: Blasch, E., Ravela, S., Aved, A. (eds.) Handbook of Dynamic Data Driven Applications Systems, pp. 631–651. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95504-9_28
Li, H., et al.: Design of a dynamic data-driven system for multispectral video processing. In: Blasch, E., Ravela, S., Aved, A. (eds.) Handbook of Dynamic Data Driven Applications Systems, pp. 529–545. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95504-9_23
Blasch, E., Ravela, S., Aved, A. (eds.): Handbook of Dynamic Data Driven Applications Systems. Springer, Cham (2018)
Fujimoto, R., et al.: Dynamic data driven application systems: research challenges and opportunities. In: 2018 Winter Simulation Conference (WSC), pp. 664–678. IEEE, Sweden (2018)
Yuan, L., Chen, H., Ewing, R., Blasch, E., Li, J.: Three dimensional indoor positioning based on passive radio frequency signal strength distribution. Manuscript accepted by IEEE Internet Things J
Yuan, L., et al.: Interpretable passive multi-modal sensor fusion for human identification and activity recognition. Sensors 22(15), 5787 (2022)
Mu, H., Ewing, R., Blasch, E., Li, J.: Human subject identification via passive spectrum monitoring. In: NAECON 2021-IEEE National Aerospace and Electronics Conference, pp. 317–322. IEEE (2021)
Mu, H., Liu, J., Ewing, R., Li, J.: Human indoor positioning via passive spectrum monitoring. In: 2021 55th Annual Conference on Information Sciences and Systems (CISS), pp. 1–6. IEEE (2021)
Tran, H.Q., Nguyen, T.V., Huynh, T.V., Tran, N.Q.: Improving accuracy of indoor localization system using ensemble learning. Syst. Sci. Control. Eng. 10(1), 645–652 (2022)
Iorkyase, E.T., et al.: Improving RF-based partial discharge localization via machine learning ensemble method. IEEE Trans. Power Deliv. 34(4), 1478–1489 (2019)
Majumder, U., Blasch, E., Garren, D.: Deep Learning for Radar and Communications Automatic Target Recognition. Artech House, Norwood (2020)
Kumar, A., Mayank, J.: Ensemble Learning for AI Developers. BApress, Berkeley (2020)
Acknowledgements
Thanks to Dr. Erik Blasch for concept development and co-authoring the paper. This research is partially supported by the AFOSR grant FA9550-21-1-0224. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Research Laboratory or the U.S. Government.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yuan, L., Chen, H., Ewing, R., Li, J. (2024). Passive Radio Frequency-Based 3D Indoor Positioning System via Ensemble Learning. In: Blasch, E., Darema, F., Aved, A. (eds) Dynamic Data Driven Applications Systems. DDDAS 2022. Lecture Notes in Computer Science, vol 13984. Springer, Cham. https://doi.org/10.1007/978-3-031-52670-1_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-52670-1_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-52669-5
Online ISBN: 978-3-031-52670-1
eBook Packages: Computer ScienceComputer Science (R0)