Skip to main content

Passive Radio Frequency-Based 3D Indoor Positioning System via Ensemble Learning

  • Conference paper
  • First Online:
Dynamic Data Driven Applications Systems (DDDAS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13984))

Included in the following conference series:

  • 458 Accesses

Abstract

Passive radio frequency (PRF)-based indoor positioning systems (IPS) have attracted researchers’ attention due to their low price, easy and customizable configuration, and non-invasive design. This paper proposes a PRF-based three-dimensional (3D) indoor positioning system (PIPS), which is able to use signals of opportunity (SoOP) for positioning and also capture a scenario signature. PIPS passively monitors SoOPs containing scenario signatures through a single receiver. Moreover, PIPS leverages the Dynamic Data Driven Applications System (DDDAS) framework to devise and customize the sampling frequency, enabling the system to use the most impacted frequency band as the rated frequency band. Various regression methods within three ensemble learning strategies are used to train and predict the receiver position. The PRF spectrum of 60 positions is collected in the experimental scenario, and three criteria are applied to evaluate the performance of PIPS. Experimental results show that the proposed PIPS possesses the advantages of high accuracy, configurability, and robustness.

Supported by Air Force Office of Scientific Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moghtadaiee, V., Dempster, A.G.: Indoor location fingerprinting using FM radio signals. IEEE Trans. Broadcast. 60(2), 336–346 (2014)

    Article  Google Scholar 

  2. Souli, N., Makrigiorgis, R., Kolios, P., Ellinas, G.: Real-time relative positioning system implementation employing signals of opportunity, inertial, and optical flow modalities. In: 2021 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 229–236. IEEE, Athens (2021)

    Google Scholar 

  3. Plale, B., et al.: Towards dynamically adaptive weather analysis and forecasting in LEAD. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J.J. (eds.) ICCS 2005. LNCS, vol. 3515, pp. 624–631. Springer, Heidelberg (2005). https://doi.org/10.1007/11428848_81

    Chapter  Google Scholar 

  4. Patra, A.K., et al.: Challenges in developing DDDAS based methodology for volcanic ash hazard analysis - effect of numerical weather prediction variability and parameter estimation. Procedia Comput. Sci. 18, 1871–1880 (2013)

    Article  Google Scholar 

  5. Michopoulos, J., Tsompanopoulou, P., Houstis, E., Joshi, A.: Agent-based simulation of data-driven fire propagation dynamics. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3038, pp. 732–739. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24688-6_95

    Chapter  Google Scholar 

  6. Allaire, D., et al.: An offline/online DDDAS capability for self-aware aerospace vehicles. Procedia Comput. Sci. 18, 1959–1968 (2013)

    Article  Google Scholar 

  7. Kopsaftopoulos, F., Chang, F.-K.: A dynamic data-driven stochastic state-awareness framework for the next generation of bio-inspired fly-by-feel aerospace vehicles. In: Blasch, E.P., Darema, F., Ravela, S., Aved, A.J. (eds.) Handbook of Dynamic Data Driven Applications Systems, pp. 713–738. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-74568-4_31

    Chapter  Google Scholar 

  8. Yan, H., Zhang, Z., Zou, J.: Dynamic space-time model for syndromic surveillance with particle filters and Dirichlet process. In: Blasch, E., Ravela, S., Aved, A. (eds.) Handbook of Dynamic Data Driven Applications Systems, pp. 139–152. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95504-9_7

    Chapter  Google Scholar 

  9. Neal, S., Fujimoto, R., Hunter, M.: Energy consumption of data driven traffic simulations. In: 2016 Winter Simulation Conference (WSC), pp. 1119–1130. IEEE (2016)

    Google Scholar 

  10. Mulani, S.B., Roy, S., Jony, B.: Uncertainty analysis of self-healed composites with machine learning as part of DDDAS. In: Darema, F., Blasch, E., Ravela, S., Aved, A. (eds.) DDDAS 2020. LNCS, vol. 12312, pp. 113–120. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61725-7_15

    Chapter  Google Scholar 

  11. Damgacioglu, H., Celik, E., Yuan, C., Celik, N.: Dynamic data driven application systems for identification of biomarkers in DNA methylation. In: Blasch, E.P., Darema, F., Ravela, S., Aved, A.J. (eds.) Handbook of Dynamic Data Driven Applications Systems, pp. 241–261. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-74568-4_12

    Chapter  Google Scholar 

  12. Blasch, E., Aved, A., Bhattacharyya, S.S.: Dynamic data driven application systems (DDDAS) for multimedia content analysis. In: Blasch, E., Ravela, S., Aved, A. (eds.) Handbook of Dynamic Data Driven Applications Systems, pp. 631–651. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95504-9_28

    Chapter  Google Scholar 

  13. Li, H., et al.: Design of a dynamic data-driven system for multispectral video processing. In: Blasch, E., Ravela, S., Aved, A. (eds.) Handbook of Dynamic Data Driven Applications Systems, pp. 529–545. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95504-9_23

    Chapter  Google Scholar 

  14. Blasch, E., Ravela, S., Aved, A. (eds.): Handbook of Dynamic Data Driven Applications Systems. Springer, Cham (2018)

    Google Scholar 

  15. Fujimoto, R., et al.: Dynamic data driven application systems: research challenges and opportunities. In: 2018 Winter Simulation Conference (WSC), pp. 664–678. IEEE, Sweden (2018)

    Google Scholar 

  16. Yuan, L., Chen, H., Ewing, R., Blasch, E., Li, J.: Three dimensional indoor positioning based on passive radio frequency signal strength distribution. Manuscript accepted by IEEE Internet Things J

    Google Scholar 

  17. Yuan, L., et al.: Interpretable passive multi-modal sensor fusion for human identification and activity recognition. Sensors 22(15), 5787 (2022)

    Article  Google Scholar 

  18. Mu, H., Ewing, R., Blasch, E., Li, J.: Human subject identification via passive spectrum monitoring. In: NAECON 2021-IEEE National Aerospace and Electronics Conference, pp. 317–322. IEEE (2021)

    Google Scholar 

  19. Mu, H., Liu, J., Ewing, R., Li, J.: Human indoor positioning via passive spectrum monitoring. In: 2021 55th Annual Conference on Information Sciences and Systems (CISS), pp. 1–6. IEEE (2021)

    Google Scholar 

  20. Tran, H.Q., Nguyen, T.V., Huynh, T.V., Tran, N.Q.: Improving accuracy of indoor localization system using ensemble learning. Syst. Sci. Control. Eng. 10(1), 645–652 (2022)

    Article  Google Scholar 

  21. Iorkyase, E.T., et al.: Improving RF-based partial discharge localization via machine learning ensemble method. IEEE Trans. Power Deliv. 34(4), 1478–1489 (2019)

    Article  Google Scholar 

  22. Majumder, U., Blasch, E., Garren, D.: Deep Learning for Radar and Communications Automatic Target Recognition. Artech House, Norwood (2020)

    Google Scholar 

  23. Kumar, A., Mayank, J.: Ensemble Learning for AI Developers. BApress, Berkeley (2020)

    Book  Google Scholar 

Download references

Acknowledgements

Thanks to Dr. Erik Blasch for concept development and co-authoring the paper. This research is partially supported by the AFOSR grant FA9550-21-1-0224. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Research Laboratory or the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yuan, L., Chen, H., Ewing, R., Li, J. (2024). Passive Radio Frequency-Based 3D Indoor Positioning System via Ensemble Learning. In: Blasch, E., Darema, F., Aved, A. (eds) Dynamic Data Driven Applications Systems. DDDAS 2022. Lecture Notes in Computer Science, vol 13984. Springer, Cham. https://doi.org/10.1007/978-3-031-52670-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52670-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52669-5

  • Online ISBN: 978-3-031-52670-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics