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Abstract. Passive radio frequency (PRF)-based indoor positioning sys-
tems (IPS) have attracted researchers’ attention due to their low price,
easy and customizable configuration, and non-invasive design. This paper
proposes a PRF-based three-dimensional (3D) indoor positioning system
(PIPS), which is able to use signals of opportunity (SoOP) for posi-
tioning and also capture a scenario signature. PIPS passively monitors
SoOPs containing scenario signatures through a single receiver. More-
over, PIPS leverages the Dynamic Data Driven Applications System
(DDDAS) framework to devise and customize the sampling frequency,
enabling the system to use the most impacted frequency band as the
rated frequency band. Various regression methods within three ensemble
learning strategies are used to train and predict the receiver position. The
PRF spectrum of 60 positions is collected in the experimental scenario,
and three criteria are applied to evaluate the performance of PIPS. Ex-
perimental results show that the proposed PIPS possesses the advantages
of high accuracy, configurability, and robustness.

Keywords: Indoor positioning system · Passive radio frequency · Signal
of opportunity · Ensemble learning · Machine learning.

1 Introduction

Signals of opportunity (SoOP) for implementing indoor positioning system (IPS)
has shown progress in recent years [1,2]. SoOP refers to some non-task signals
that are used to achieve specified tasks, such as Wi-Fi, cellular network, broad-
casting, and other communication signals for positioning tasks. These commu-
nication signals have different frequencies according to different functions. For
example, the frequency of broadcast signals is tens to hundreds of MHz, and
the frequency of Wi-Fi can reach 5GHz. Each SoOP has different performances
for different tasks, which will be affected by the local base stations, experiment
scenarios, and task settings. SoOP aim to facilitate high-precision positioning in
GPS-shielded environments while avoiding the need for additional signal sources.
However, how to use a single receiver for positioning in an environment where
? Supported by Air Force Office of Scientific Research.
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the signal source is unknown is still an open problem. Therefore, a passive radio
frequency (PRF) system is proposed to integrate these communication signals
due to the design of a customizable frequency band. Finding the frequency band
most impacted for positioning is the most significant prior. In addition, PRF can
capture scenario signatures, including liquids, metal objects, house structures,
etc., which has been proven to further improve the performance of a positioning
system.

Dynamic Data Driven Applications System (DDDAS) frameworks have al-
ready shown their application prospects, such as in the fields of environmental
science, biosensing, autonomous driving, etc. The application of the DDDAS
framework to these domains varies, depending on the input variables and out-
put decisions of the system. Table 1 shows some examples of instantaneous and
long-term DDDAS. Currently, most of DDDAS are emphasized to instantaneous
DDDAS, which require us to react immediately to dynamic data input. For ex-
ample, hurricane forecasting is an instantaneous DDDAS, and if it doesn’t react
in time, there will be some serious consequences. But long-term DDDAS also
has its benefits, and there are no serious consequences for not responding im-
mediately, such as an energy analysis DDDAS is used to save consumption. The
advantage of long-term DDDAS is dynamic data input, which can effectively
reduce consumption, improve accuracy, and enhance robustness.

Table 1. Instantaneous DDDAS vs. Long-Term DDDAS.

Instantaneous Long-Term
Weather forecasting [3] Energy analysis [9]

Atmospheric contaminants [4] Materials Analysis [10]
Wildfires detection [5] Identification of biomarkers in DNA methylation [11]
Autonomous driving [6] Multimedia content analysis [12]

Fly-by-feel aerospace vehicle [7] Image processing [13]
Biohealth outbreak [8] Our proposed positioning system

Due to the uncertainty of SoOPs and scenario signature, IPSs need to con-
form to the paradigm of DDDAS [14,15]. For the PRF positioning system, the
selection of frequency band is a dynamic issue, which is determined according
to the scenario signature. Therefore, the computational feedback in DDDAS is
required to reconfigure the sensor for frequency band selection. Selecting some
frequency bands from the full frequency band can effectively save sampling time,
computing resources, and increase the robustness, etc. [16]. Moreover, the cus-
tomizable frequency band can be used in a variety of different tasks, such as
human monitoring, navigation, house structure detection, etc. [17,18,19]. There-
fore, the PRF-based systems under the DDDAS framework need to dynamically
optimize the frequency parameter according to its usage scenarios and task set-
tings to obtain higher adaptability, accuracy, and robustness.

Ensemble learning is used as the strategy for the positioning regression task
due to its ability to integrate the strengths of multiple algorithms [20,21]. En-
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semble learning includes three strategies, namely boosting, bagging, and stacking
[22], depending on whether the base estimator is parallel or serial [23]. The boost-
ing strategy is a serial strategy where the posterior estimator learns the wrong
samples of the prior estimator, which reduces the bias of the model. However,
this strategy overemphasizes the wrong samples and thus may lead to larger vari-
ance and weaker generalization ability of the model. Both bagging and stacking
strategies are parallel structures, which can reduce the variance and enhances
the generalization ability. Compared to the bagging strategy, which uses aver-
aging as the final estimator, stacking uses a regressor as the final estimator.
Compared to linear or weighted averaging, the model can further reduce model
bias by analyzing the decisions of the base estimators.

This paper proposes a PRF-based 3D IPS, named PIPS, for the positioning
regression task. Within the DDDAS framework, the performance of the PIPS
system is enhanced by adaptive frequency band selection, which continues the
most impacted frequency band found in the previous work [16]. PRF spectrum
data was collected at 60 gridded positions in the scenario. The spectrum data
set for positioning is trained in three ensemble learning strategies. Root mean
square error (RMSE) is used to evaluate the accuracy of PIPS, coefficient of de-
termination R2 is used to evaluate the reliability, and 95% confidence error (CE)
is used to evaluate the optimality. Experiments demonstrate that the proposed
PIPS exhibits its potential for accurate object locating tasks.

This paper is presented as follows. In Section II, the details and sensor set-
tings of the proposed PIPS are illustrated. The experimental setup and results
are shown in Section III. Section IV gives some discussions on the advantages
of PIPS under the DDDAS framework prior to the conclusion and future work
demonstrated in Section V.

2 Frequency-adaptive PIPS

PIPS achieves sensing by passively accepting the PRF spectrum in the sce-
nario. Software-defined radio (SDR) is used to control the PRF sensor for data
collection, including the frequency band B, step size ∆, sampling rate Rs, etc.
Reasonable selection of the parameters of the PRF sensor in PIPS is crucial. The
diagram of frequency band selection by PIPS under the framework of DDDAS is
shown in Fig. 1. The DDDAS framework is used to reconfigure the parameters
of the PRF sensor, which is achieved through SDR. The parameters of the PRF
sensor, especially the center frequency, are dynamically reconfigured to adapt to
the signatures of different scenarios.

With the support of initial parameters B,∆, and Rs, the data set collected by
the PRF sensor D ∈ Rn×m and its corresponding position label set C ∈ Rn×3.
D is the PRF spectrum, that is, the average powers collected over the frequency
band. Although it is feasible to use the average power corresponding to the full
frequency band as the feature vector for positioning, it will greatly increase the
sampling time. Therefore, it is necessary to optimize the initial parameters B,
∆, and Rs under the DDDAS framework. The proposed PIPS system can be
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Fig. 1. DDDAS framework reconfigures the parameters B,∆, and Rs of the PRF sensor
in PIPS.

defined as the following function f : C → D,

d = f(c;B, ∆,Rs), (1)

where d and c are a pair of samples in D and C, which also represent a pair
of corresponding PRF spectrum and coordinate. Eq. 2 shows the collection of
PRF data at the corresponding coordinates given the parameters. By training
on the ensemble learning model on the collected data and making predictions,
the estimated coordinates can be obtained:

ĉ = f−1(d;B, ∆,Rs). (2)

The PRF spectral data collected by the PRF sensor in the experimental sce-
nario contains the SoOP and the signature of the experimental scenario. The
PRF sensor in PIPS is reconfigured after the adaptive band selection algo-
rithm is used to find the most impacted band for the positioning task. After
the k-th optimization, the collected data set under the optimized parameter
Bk, ∆k, and Rsk is defined as Dk ∈ Rn×mk . Dynamic reconfiguration may be
performed once or multiple times, depending on the properties of the SoOP
in the scenario, including received signal strength (RSS), center frequency, in-
tegration of multiple signal sources, etc. The dynamic needs of the configura-
tion are mainly changing between different scenarios, implemented tasks, and
SoOPs. When the SoOP remains unchanged, its dynamic configuration is only
needed once to find the optimized parameters, which can reduce the waste
of computing resources while achieving system applicability. The B1(MHz) ∈
{91.2, 93.6, 96.0, 98.4, 100.8} found in previous work are used in the experiments
for preliminary validation of the proposed PIPS. The PRF sensor used in our
experiment is RTL-SDR RTL2832U because of its cheap and easy-to-configure
characters, as shown in Fig. 2.

3 Experiment and Results

This section is organized as follows. In the experimental scenario, spectrum data
are collected at 60 positions for the frequency band B1 that has the most impact
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Fig. 2. RTL-SDR RTL2832U is used as PRF sensor to collect PRF spectrum.

on the positioning. Using single regressors as a baseline, three ensemble learning
strategies of boosting, bagging, and stacking are compared. Three criteria are
used as evaluation methods. This section focuses on the setup of experimental
scenarios and the comparison and evaluation of strategies and models.

3.1 Experimental Setup

Data collection is done in an indoor home scenario, as shown in Fig. 3. In order to
avoid the impact of sampling distance on performance and also to better compare
with other state-of-the-art technologies, one meter is selected as the sampling
distance in the three directions of length, width, and height. According to past
experience, some sources that may have an impact on the PRF spectrum are
marked in Fig. 3, such as a host computer, operator, TV, Wi-Fi router, printer,
etc. The experimental scenario with a length of 6.15 m, a width of 4.30 m, and a
height of 2.42 m is used as a preliminary verification of the PRF positioning. We
collected 100 samples at each position, and a total of 6000 samples were divided
into training and test data sets in a ratio of 0.7 and 0.3. Using scikit-learn, the
model was built on TensorFlow and trained with a Nvidia GeForce RTX 3080
GPU.
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Fig. 3. Illustration of an indoor living room scenario is used to collect PRF data at
60 positions. The red and blue antennas are represented as 0 and 1 meters from the
bottom of the antenna to the ground, respectively. Other potentially disturbing objects
and human are also marked.

3.2 Results and Evaluation

To better demonstrate the effectiveness of the collected PRF spectrum data for
positioning, principal component analysis (PCA) is used to reduce the dimen-
sionality of the PRF spectrum data and visualization. The raw PRF spectrum
is 5D since the most impacted frequency band used in data collection are five
frequencies, while PCA reduces it to 3D for visualization. Using PCA is just
for visualization, while the raw data set is used to train the ensemble learning
model for the positioning task. Fig. 4 shows PRF spectrum data dimensionally
reduced by PCA. Data at different positions and heights can form a cluster in
the PCA space, which can prove that there are differences in data at different
positions, which is also the fundamental reason for positioning.

For the proposed model, it is required to compare with the baseline in terms
of performance and complexity. For ensemble learning models, some single re-
gressors are used as the baseline, including Support Vector Regression (SVR),
K Nearest Neighbors Regression (KNR), Gaussian Process Regression (GPR),
Decision Trees Regression (DTR), and Multi-layer Perceptron (MLP). The per-
formance is compared by three evaluations: Root mean square error (RMSE),
coefficient of determination R2, and 95% CE. RMSE is targeted at applications
that require lower average errors but less stringent positioning systems, such as
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Fig. 4. Illustration of PRF spectrum with reduced dimensionality by PCA. The red
and blue dots indicate that spectrum data was collected at 0 and 1 m from the ground,
respectively.

warehouse patrol robots. RMSE of the test data set can be expressed as

RMSE =

√
‖C∗ − Ĉ∗2‖

n∗
, (3)

where C∗ ∈ Rn∗×3 is the label of test data set, Ĉ∗ is the estimated label obtained
by ensemble model. 95% CE is the corresponding error when the cumulative
distribution function of RMSE reaches 95%, which can be expressed as

95%CE = F−1
RMSE(0.95), (4)

where F is the cumulative distribution function of RMSE, the 95% CE is aimed
at systems that are more critical to accuracy, such as firefighting robots. It re-
quires a higher confidence level to limit the robot’s error to a strict value. The
time complexity is considered to be equivalent to model fitting time. Coefficient
of determination and time complexity are not our main concerns. Since the pro-
posed PIPS is an application system, it is necessary to pay more attention to the
customer-oriented performance of the application. Each model was trained with
its default parameters for initial comparison. The performance and complexity
of some regressors are shown in Table 2.

It can be seen from Table 2 that KNR has the best performance, which will
be used as the baseline for PIPS to compare with the ensemble learning strat-
egy. Different models under three ensemble learning strategies are used to train
on our positioning data set. For serial boosting strategies, there are three main
extensions, including Adaptive Boosting Regression (ABR), Gradient Boosting
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Table 2. Single regressors to implement positioning tasks and serve as baselines for
PIPS.

Regression RMSE (m) R2 95% CE (m) Time (s)
SVR 1.229 0.777 2.214 1.026
KNR 0.268 0.986 0.412 0.002
GPR 0.612 0.967 1.248 1.508
DTR 0.603 0.930 1.111 0.016
MLP 1.506 0.562 2.534 2.104

Regression (GBR), and Histogram-based GBR (HGBR). ABR makes the poste-
rior estimator focus more on samples that cannot be solved by the prior estima-
tor through an adaptive weight method. Both GBR and HGBR are ensembles
of regression trees that use a loss function to reduce the error of the previous
estimator. According to the results in Table 2, we selected four models with
different accuracies, namely SVR, KNR, GPR, and DTR, for further analysis.
Table 3 shows the model performance under the boosting strategy.

Table 3. Performance of ensemble learning models under the boosting strategy.

Ensemble Strategy Base Estimator RMSE (m) R2 95% CE (m) Time (s)
ABR SVR 0.828 0.881 1.419 88.368

KNR 0.324 0.985 0.095 2.859
GPR 0.825 0.859 1.442 278.900
DTR 0.324 0.983 0.095 2.193

GBR DTR 0.807 0.879 1.575 1.698
HGBR DTR 0.457 0.960 1.027 1.161

It can be seen that the ensemble learning model under the boosting strategy
has no advantage in RMSE compared to a single regressor, but it greatly reduces
95% CE, especially for ABR with KNR and DTR as base estimators. This means
that most of the samples have errors less than 0.095, but there are also a few
samples with large errors that increase the value of RMSE. Boosting strategies
are effective in reducing the mode of error. For the bagging strategy, the base
estimator is also a crucial parameter. In addition to the general bagging model,
Random Forest Regression (RFR) and Extremely Randomized Trees (ERT) as
bagging variants and extensions of DTR are also included as part of the compar-
ison. Table 4 shows the performance of the models under the bagging strategy.

Through the comparison of Table 2 and Table 4, it can be found that -
whether it is KNR with the best accuracy or SVR with poor accuracy, the bag-
ging strategy cannot significantly further improve its accuracy. The final pre-
diction of the bagging strategy will be related to each base estimator, that is,
it will also be affected by the base estimator with poor accuracy. The stack-
ing strategy aggregates base estimators through the final estimator, which gives
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Table 4. Performance of ensemble learning models under the bagging strategy.

Ensemble Strategy Base Estimator RMSE (m) R2 95% CE (m) Time (s)
Bagging SVR 1.124 0.775 2.116 5.028

KNR 0.265 0.989 0.423 0.372
GPR 0.623 0.928 1.323 41.264

RFR DTR 0.418 0.966 0.964 0.934
ERT DTR 0.299 0.966 0.710 0.304

different weights to base estimators. We use the ten previously mentioned re-
gressors, including the ensemble learning model as the base estimator, and then
test the performance of these regressors as the final estimator. The regression
results under the stacking strategy are shown in Table 5.

Table 5. Performance of ensemble learning models under the stacking strategy.

Ensemble Strategy Final Estimator RMSE (m) R2 95% CE (m) Time (s)
Stacking SVR 0.271 0.988 0.463 97.281

KNR 0.259 0.990 0.446 92.678
GPR 2.115 0.273 3.924 97.241
DTR 0.327 0.984 0.086 93.218
MLP 0.263 0.990 0.459 95.106
ABR 0.334 0.984 0.258 97.657
GBR 0.258 0.990 0.317 94.338
HGBR 0.254 0.990 0.371 95.478
RFR 0.255 0.990 0.431 93.835
ETR 0.259 0.990 0.334 93.808

The stacking strategy affords the use of any model as the base estimator,
so the stacking strategy can also be a strategy that integrates ensemble learn-
ing models. The results show that the stacking strategy has an advantage in
performance compared to the bagging strategy, which is because the final esti-
mator can adaptively aggregate all the base estimators. However, the stacking
strategy is not dominant compared to the boosting strategy. Although stacking
is stronger than boosting in RMSE and R2, the time complexity is dozens of
times.

After experiments, we found that the Stacking strategy gave the best re-
sults. Compared to the baseline, the proposed ensemble learning strategy has
considerable improvement on 95% CE. In particular, the stacking strategy with
DTR as the final estimator can reduce the 95% CE by 92.3%. Although 95%
of the samples have relatively low errors, the average RMSE is still high, which
means that minority samples with a proportion of 5% or less have considerable
errors. These samples may have received interference, such as the movement of
the human body, the effect of metal or liquid shielding on the PRF spectrum,
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etc. Therefore, GBR as the final estimator is considered as the global optimal
solution, which outperforms the baseline in all aspects.

4 Discussion

DDDAS is crucial for PIPS, the main purpose of the DDDAS framework is to
find the optimal solution for the positioning task in the target scenario. We im-
plement pre-sampling in the target scenario and then use SHAP to analyze the
collected samples and find the optimal frequency band, step size, and sampling
rate. PIPS under the DDDAS framework has three advantages. Firstly and most
importantly, the sampling time is reduced by 98%. We reduced the 400 frequen-
cies to 5 frequencies under the DDDAS framework. If we do not use the DDDAS
framework to find the optimal frequency, data collection over the full frequency
band will waste a huge amount of time. Secondly, the redeployment time of the
sensor is also greatly reduced. The proposed PIPS system also has excellent re-
deployment capabilities in new scenarios, thanks to the DDDAS framework on
frequency band B, step size ∆, sampling rate Rs optimization. To achieve the
accuracy and sampling resolution described above, the time resource required
for redeployment is around 300 s/m3.The training time is negligible compared
to the PRF data sampling time.

Thirdly, it can potentially improve accuracy and reliability. The PIPS system
uses RSS in the five most sensitive frequencies, especially since this passive RF
technology can capture signatures from scenarios such as metal parts in house
structures or liquids. So basically, the PRF signal collected in each scenario is
unique. On the one hand, there are inevitably some interferences in the full fre-
quency band, including natural noise and artificial signals. These noise signals
are random and abrupt, which is not conducive to the stability of a positioning
system. On the other hand, we don’t want to include any unnecessary features in
the samples. In this task, we did not use deep learning but just traditional ma-
chine learning. Traditional machine learning cannot adaptively assign weights, so
unnecessary and cluttered features obviously affect the accuracy of classification.
Therefore, collecting data in the most sensitive frequency bands for positioning
can effectively avoid these possible interferences and reduce feature complexity
to improve accuracy and reliability.

5 Conclusion

This paper proposes a PIPS under the DDDAS framework to solve the 3D po-
sitioning problem. Three ensemble learning strategies and their various variants
and extensions are used to train on the collected data set. The experimental re-
sults show that the proposed ensemble learning strategy has an RMSE of 0.258
meters, an R2 of 0.990, and a 95% CE of 0.317 meters, which is much better
than the baselines. PIPS under the DDDAS framework is considered a potential
application in specific scenarios, such as robot-patrolled factories or warehouses,
due to its efficient redeployment and high accuracy.
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For future work, dimensionality reduction is a potential research direction.
The current work is limited to the frequency selection technology. We selected
the most sensitive frequency band from the 400 frequencies in the full frequency
band under the DDDAS framework. However, dimensionality reduction, while
similar in terms of results, has different effects. For the dimensionality reduction
method, although it can reduce the complexity of the data, it cannot reduce
the sampling time. The benefits of PCA lie in privacy considerations and visu-
alization applications. In internet of things (IoT) applications, performing PCA
processing locally can reduce the dimension of data so that customer privacy
can be protected after uploading to the cloud. PCA is able to reduce multi-
dimensional data to three-dimensional or two-dimensional to enable visualization
applications.
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