Skip to main content

SpecAL: Towards Active Learning for Semantic Segmentation of Hyperspectral Imagery

  • Conference paper
  • First Online:
Dynamic Data Driven Applications Systems (DDDAS 2022)

Abstract

We investigate active learning towards applied hyperspectral image analysis for semantic segmentation. Active learning stems from initially training on a limited data budget and then gradually querying for additional sets of labeled examples to enrich the overall data distribution and help neural networks increase their task performance. This approach works in favor of the remote sensing tasks, including hyperspectral imagery analysis, where labeling can be intensive and time-consuming as the sensor angle, configured parameters, and atmospheric conditions fluctuate.

In this paper, we tackle active learning for semantic segmentation using the AeroRIT dataset on three fronts - data utilization, neural network design, and formulation of the cost function (also known as acquisition factor, uncertainty estimator). Specifically, we extend the batch ensembles method to semantic segmentation for creating efficient network ensembles to estimate the network’s uncertainty as the acquisition factor for querying new sets of images. Our approach reduces the data labeling requirement and achieves competitive performance on the AeroRIT dataset by using only 30% of the entire training data.

supported by Dynamic Data Driven Applications Systems Program, Air Force Office of Scientific Research under Grant FA9550-19-1-0021 and Nvidia GPU Grant Program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  2. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552 (2017)

  3. Kemker, R., Salvaggio, C., Kanan, C.: Algorithms for semantic segmentation of multispectral remote sensing imagery using deep learning. ISPRS J. Photogramm. Remote. Sens. 145, 60–77 (2018)

    Article  Google Scholar 

  4. Kendall, A., Badrinarayanan, V., Cipolla, R.: Bayesian segnet: model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. arXiv preprint arXiv:1511.02680 (2015)

  5. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  6. Pereyra, G., Tucker, G., Chorowski, J., Kaiser, Ł., Hinton, G.: Regularizing neural networks by penalizing confident output distributions. arXiv preprint arXiv:1701.06548 (2017)

  7. Rangnekar, A., Ientilucci, E., Kanan, C., Hoffman, M.J.: Uncertainty estimation for semantic segmentation of hyperspectral imagery. In: Darema, F., Blasch, E., Ravela, S., Aved, A. (eds.) Dynamic Data Driven Applications Systems: Third International Conference, DDDAS 2020, Boston, MA, USA, October 2-4, 2020, Proceedings, pp. 163–170. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-61725-7_20

    Chapter  Google Scholar 

  8. Rangnekar, A., Kanan, C., Hoffman, M.: Semantic segmentation with active semi-supervised learning. arXiv preprint arXiv:2203.10730 (2022)

  9. Rangnekar, A., Mokashi, N., Ientilucci, E.J., Kanan, C., Hoffman, M.J.: Aerorit: a new scene for hyperspectral image analysis. IEEE Trans. Geosci. Remote Sens. 58(11), 8116–8124 (2020)

    Article  Google Scholar 

  10. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III, pp. 234–241. Springer International Publishing, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  11. Siddiqui, Y., Valentin, J., Nießner, M.: Viewal: Active learning with viewpoint entropy for semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9433–9443 (2020)

    Google Scholar 

  12. Sinha, S., Ebrahimi, S., Darrell, T.: Variational adversarial active learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5972–5981 (2019)

    Google Scholar 

  13. Wen, Y., Tran, D., Ba, J.: Batchensemble: An alternative approach to efficient ensemble and lifelong learning (2020)

    Google Scholar 

  14. Xie, S., Feng, Z., Chen, Y., Sun, S., Ma, C., Song, M.: Deal: Difficulty-aware active learning for semantic segmentation. In: Proceedings of the Asian Conference on Computer Vision (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aneesh Rangnekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rangnekar, A., Ientilucci, E., Kanan, C., Hoffman, M. (2024). SpecAL: Towards Active Learning for Semantic Segmentation of Hyperspectral Imagery. In: Blasch, E., Darema, F., Aved, A. (eds) Dynamic Data Driven Applications Systems. DDDAS 2022. Lecture Notes in Computer Science, vol 13984. Springer, Cham. https://doi.org/10.1007/978-3-031-52670-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52670-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52669-5

  • Online ISBN: 978-3-031-52670-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics