Abstract
Efficient methods for achieving active learning in complex physical systems are essential for achieving the two-way interaction between data and models that underlies DDDAS. This work presents a two-stage multifidelity active learning method for Gaussian-process-based reliability analysis. In the first stage, the method allows for the flexibility of using any single-fidelity acquisition function for failure boundary identification when selecting the next sample location. We demonstrate the generalized multifidelity method using the existing acquisition functions of expected feasibility, U-learning, targeted integrated mean square error acquisition functions, or their a priori Monte Carlo sampled variants. The second stage uses a weighted information-gain-based criterion for the fidelity model selection. The multifidelity method leads to significant computational savings over the single-fidelity versions for real-time reliability analysis involving expensive physical system simulations.
This work has been supported in part by Department of Energy award number DE-SC0021239, ARPA-E Differentiate award number DE-AR0001208, and AFOSR DDIP award FA9550-22-1-0419.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Au, S.K., Beck, J.L.: Estimation of small failure probabilities in high dimensions by subset simulation. Probab. Eng. Mech. 16(4), 263ā277 (2001)
Balesdent, M., Morio, J., Marzat, J.: Kriging-based adaptive importance sampling algorithms for rare event estimation. Struct. Saf. 44, 1ā10 (2013)
Bichon, B.J., Eldred, M.S., Swiler, L.P., Mahadevan, S., McFarland, J.M.: Efficient global reliability analysis for nonlinear implicit performance functions. AIAA J. 46(10), 2459ā2468 (2008)
Blasch, E., Lambert, D.A.: High-level information fusion management and systems design. Artech House (2012)
Blasch, E., Ravela, S., Aved, A. (eds.): Handbook of Dynamic Data Driven Applications Systems. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95504-9
Chaudhuri, A., Marques, A.N., Lam, R., Willcox, K.E.: Reusing information for multifidelity active learning in reliability-based design optimization. In: AIAA Scitech 2019 Forum, p. 1222 (2019)
Chaudhuri, A., Marques, A.N., Willcox, K.: mfEGRA: multifidelity efficient global reliability analysis through active learning for failure boundary location. Struct. Multidiscip. Optim. 64(2), 797ā811 (2021)
Darema, F.: Dynamic Data Driven Applications Systems: A New Paradigm for Application Simulations and Measurements. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3038, pp. 662ā669. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24688-6_86
Dribusch, C., Missoum, S., Beran, P.: A multifidelity approach for the construction of explicit decision boundaries: application to aeroelasticity. Struct. Multidiscip. Optim. 42(5), 693ā705 (2010)
Dubourg, V., Sudret, B., Bourinet, J.M.: Reliability-based design optimization using kriging surrogates and subset simulation. Struct. Multidiscip. Optim. 44(5), 673ā690 (2011)
Echard, B., Gayton, N., Lemaire, M.: AK-MCS: an active learning reliability method combining kriging and monte Carlo simulation. Struct. Saf. 33(2), 145ā154 (2011)
Echard, B., Gayton, N., Lemaire, M., Relun, N.: A combined importance sampling and kriging reliability method for small failure probabilities with time-demanding numerical models. Reliab. Eng. Syst. Saf. 111, 232ā240 (2013)
Eftang, J.L., Huynh, D., Knezevic, D.J., Patera, A.T.: A two-step certified reduced basis method. J. Sci. Comput. 51(1), 28ā58 (2012)
Hohenbichler, M., Gollwitzer, S., Kruse, W., Rackwitz, R.: New light on first-and second-order reliability methods. Struct. Saf. 4(4), 267ā284 (1987)
Kroese, D.P., Rubinstein, R.Y., Glynn, P.W.: The cross-entropy method for estimation. In: Handbook of Statistics, vol. 31, pp. 19ā34. Elsevier (2013)
Lam, R., Allaire, D., Willcox, K.: Multifidelity optimization using statistical surrogate modeling for non-hierarchical information sources. In: 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2015)
Le Gratiet, L.: Multi-fidelity Gaussian process regression for computer experiments. Ph.D. thesis, UniversitƩ Paris-Diderot-Paris VII (2013)
Marques, A., Lam, R., Willcox, K.: Contour location via entropy reduction leveraging multiple information sources. In: Advances in Neural Information Processing Systems, pp. 5217ā5227 (2018)
Marques, A.N., Opgenoord, M.M., Lam, R.R., Chaudhuri, A., Willcox, K.E.: Multifidelity method for locating aeroelastic flutter boundaries. AIAA J., 1ā13 (2020)
Melchers, R.: Importance sampling in structural systems. Struct. Saf. 6(1), 3ā10 (1989)
Moustapha, M., Sudret, B.: Surrogate-assisted reliability-based design optimization: a survey and a unified modular framework. Struct. Multi. Optim. 60(5), 2157ā2176 (2019). https://doi.org/10.1007/s00158-019-02290-y
Ng, L.W., Willcox, K.E.: Multifidelity approaches for optimization under uncertainty. Int. J. Numer. Meth. Eng. 100(10), 746ā772 (2014)
Perdikaris, P., Raissi, M., Damianou, A., Lawrence, N.D., Karniadakis, G.E.: Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling. Proc. R. Soc. A 473(2198), 20160751 (2017)
Picheny, V., Ginsbourger, D., Roustant, O., Haftka, R.T., Kim, N.H.: Adaptive designs of experiments for accurate approximation of a target region. J. Mech. Des. 132(7), 071008 (2010)
Poloczek, M., Wang, J., Frazier, P.: Multi-information source optimization. In: Advances in Neural Information Processing Systems, pp. 4291ā4301 (2017)
Rackwitz, R.: Reliability analysis-a review and some perspectives. Struct. Saf. 23(4), 365ā395 (2001)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chaudhuri, A., Willcox, K. (2024). Generalized Multifidelity Active Learning for Gaussian-process-based Reliability Analysis. In: Blasch, E., Darema, F., Aved, A. (eds) Dynamic Data Driven Applications Systems. DDDAS 2022. Lecture Notes in Computer Science, vol 13984. Springer, Cham. https://doi.org/10.1007/978-3-031-52670-1_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-52670-1_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-52669-5
Online ISBN: 978-3-031-52670-1
eBook Packages: Computer ScienceComputer Science (R0)