Skip to main content

Explainable Human-in-the-Loop Dynamic Data-Driven Digital Twins

  • Conference paper
  • First Online:
Dynamic Data Driven Applications Systems (DDDAS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13984))

Included in the following conference series:

Abstract

Digital Twins (DT) are essentially dynamic data-driven models that serve as real-time symbiotic “virtual replicas” of real-world systems. DT can leverage fundamentals of Dynamic Data-Driven Applications Systems (DDDAS) bidirectional symbiotic sensing feedback loops for its continuous updates. Sensing loops can consequently steer measurement, analysis and reconfiguration aimed at more accurate modelling and analysis in DT. The reconfiguration decisions can be autonomous or interactive, keeping human-in-the-loop. The trustworthiness of these decisions can be hindered by inadequate explainability of the rationale, and utility gained in implementing the decision for the given situation among alternatives. Additionally, different decision-making algorithms and models have varying complexity, quality and can result in different utility gained for the model. The inadequacy of explainability can limit the extent to which humans can evaluate the decisions, often leading to updates which are unfit for the given situation, erroneous, compromising the overall accuracy of the model. The novel contribution of this paper is an approach to harnessing explainability in human-in-the-loop DDDAS and DT systems, leveraging bidirectional symbiotic sensing feedback. The approach utilises interpretable machine learning and goal modelling to explainability, and considers trade-off analysis of utility gained. We use examples from smart warehousing to demonstrate the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.anylogic.com/.

References

  1. Barredo Arrieto, A., et al.: Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inform. Fusion 58, 82–115 (2020). https://doi.org/10.1016/j.inffus.2019.12.012

    Article  Google Scholar 

  2. Blasch, E.: DDDAS advantages from high-dimensional simulation. In: 2018 Winter Simulation Conference (WSC), pp. 1418–1429 (2018). https://doi.org/10.1109/WSC.2018.8632336

  3. Gao, C., Park, H., Easwaran, A.: An anomaly detection framework for digital twin driven cyber-physical systems. In: Proceedings of the ACM/IEEE 12th International Conference on Cyber-Physical Systems, pp. 44–54. ICCPS ’21, ACM, New York, NY, USA (2021). https://doi.org/10.1145/3450267.3450533

  4. Herm, L.V., Heinrich, K., Wanner, J., Janiesch, C.: Stop ordering machine learning algorithms by their explainability! A user-centered investigation of performance and explainability. Int. J. Inform. Manage. 102538 (Jun 2022). https://doi.org/10.1016/j.ijinfomgt.2022.102538

  5. Hu, X., Wu, P.: A data assimilation framework for discrete event simulations. ACM Trans. Model. Comput. Simul. 29(3) (2019). https://doi.org/10.1145/3301502

  6. Kapteyn, M.G., Knezevic, D.J., Willcox, K.: Toward predictive Digital Twins via component-based reduced-order models and interpretable machine learning. In: AIAA Scitech 2020 Forum, pp. 1–19. American Institute of Aeronautics and Astronautics, Reston, Virginia (Jan 2020). https://doi.org/10.2514/6.2020-0418

  7. Kazman, R., Klein, M., Clements, P.: ATAM: Method for architecture evaluation. Tech. Rep. CMU/SEI-2000-TR-004, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA (2000). https://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5177

  8. Kennedy, C., Theodoropoulos, G.: Intelligent management of data driven simulations to support model building in the social sciences. In: Computational Science - ICCS 2006, pp. 562–569. Springer, Berlin Heidelberg, Berlin, Heidelberg (2006). https://doi.org/10.1007/11758532_74

  9. Kennedy, C., Theodoropoulos, G., Sorge, V., Ferrari, E., Lee, P., Skelcher, C.: AIMSS: an architecture for data driven simulations in the social sciences. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007. LNCS, vol. 4487, pp. 1098–1105. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72584-8_144

    Chapter  Google Scholar 

  10. Kennedy, C., Theodoropoulos, G., Sorge, V., Ferrari, E., Lee, P., Skelcher, C.: Data driven simulation to support model building in the social sciences. J. Algorithm. Comput. Technol. 5(4), 561–581 (2011). https://doi.org/10.1260/1748-3018.5.4.561

    Article  Google Scholar 

  11. Li, N., Cámara, J., Garlan, D., Schmerl, B.: Reasoning about when to provide explanation for human-involved self-adaptive systems. In: 2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS), pp. 195–204 (2020). https://doi.org/10.1109/ACSOS49614.2020.00042

  12. McCune, R.R., Madey, G.R.: Control of artificial swarms with DDDAS. Procedia Comput. Sci. 29, 1171–1181 (2014). https://doi.org/10.1016/j.procs.2014.05.105

    Article  Google Scholar 

  13. Miller, T.: Explanation in artificial Intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019). https://doi.org/10.1016/j.artint.2018.07.007

    Article  MathSciNet  Google Scholar 

  14. Minerva, R., Lee, G.M., Crespi, N.: Digital twin in the IoT context: a survey on technical features, scenarios, and architectural models. Proc. IEEE 108(10), 1785–1824 (2020). https://doi.org/10.1109/JPROC.2020.2998530

    Article  Google Scholar 

  15. Welsh, K., Bencomo, N., Sawyer, P., Whittle, J.: Self-explanation in adaptive systems based on runtime goal-based models. In: Kowalczyk, R., Nguyen, N.T. (eds.) Transactions on Computational Collective Intelligence XVI. LNCS, vol. 8780, pp. 122–145. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44871-7_5

    Chapter  Google Scholar 

  16. Zhang, N., Bahsoon, R., Theodoropoulos, G.: Towards engineering cognitive digital twins with self-awareness. In: 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3891–3891. IEEE (Oct 2020). https://doi.org/10.1109/SMC42975.2020.9283357

  17. Zhang, N., Bahsoon, R., Tziritas, N., Theodoropoulos, G.: Knowledge equivalence in Digital Twins of intelligent systems. arXiv:2204.07481 [cs, eess] (Apr 2022). https://arxiv.org/abs/2204.07481

Download references

Acknowledgements

This research was supported by: Shenzhen Science and Technology Program, China (No. GJHZ20210705141807022); SUSTech-University of Birmingham Collaborative PhD Programme; Guangdong Province Innovative and Entrepreneurial Team Programme, China (No. 2017ZT07X386); SUSTech Research Institute for Trustworthy Autonomous Systems, China; and EPSRC/EverythingConnected Network project on Novel Cognitive Digital Twins for Compliance, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Theodoropoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, N., Bahsoon, R., Tziritas, N., Theodoropoulos, G. (2024). Explainable Human-in-the-Loop Dynamic Data-Driven Digital Twins. In: Blasch, E., Darema, F., Aved, A. (eds) Dynamic Data Driven Applications Systems. DDDAS 2022. Lecture Notes in Computer Science, vol 13984. Springer, Cham. https://doi.org/10.1007/978-3-031-52670-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52670-1_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52669-5

  • Online ISBN: 978-3-031-52670-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics