Skip to main content

Transmission Censoring and Information Fusion for Communication-Efficient Distributed Nonlinear Filtering

  • Conference paper
  • First Online:
Dynamic Data Driven Applications Systems (DDDAS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13984))

Included in the following conference series:

  • 91 Accesses

Abstract

A transmission censoring and information fusion approach is proposed for distributed nonlinear system state estimation in Dynamic Data Driven Applications Systems (DDDAS). In this approach, to conserve communication resources, based on the Jeffreys divergence between the prior and posterior probability density functions (PDFs) of the system state, only local posterior PDFs that are sufficiently different from their corresponding prior PDFs will be transmitted to a fusion center. To further reduce the communication cost, the local posterior PDFs are approximated by Gaussian mixtures, whose parameters are learned by an expectation-maximization algorithm. At the fusion center, the received PDFs will be fused via a generalized covariance intersection algorithm to obtain a global PDF. Numerical results for a multi-senor radar target tracking example are provided to demonstrate the effectiveness of the proposed censoring approach.

This work was supported in part by the AFOSR Dynamic Data and Information Processing Portfolio under Grant FA9550-22-1-0038.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, N.R.: Decentralized Gaussian mixture fusion through unified quotient approximations. ArXiv:1907.04008 (2019)

  2. Appadwedula, S., Veeravalli, V.V., Jones, D.L.: Decentralized detection with censoring sensors. IEEE Trans. Signal Process 56(4), 1362–1373 (2008)

    Article  MathSciNet  Google Scholar 

  3. Bar-Shalom, Y., Li, X.R., Kirubarajan, T.: Estimation with Applications to Tracking and Navigation. Wiley, New York (2001)

    Google Scholar 

  4. Blasch, E., et al.: DDDAS-based joint nonlinear manifold learning for target localization. In: Proceedings of International Workshop on Structural Health Monitoring Conference (September 2017)

    Google Scholar 

  5. Chong, C.Y., Mori, S., Chang, K.C.: Distributed multitarget multisensor tracking. In: Bar-Shalom, Y. (ed.) Multitarget-Multisensor Tracking: Advanced Applications, pp. 247–295. Artech House (1990)

    Google Scholar 

  6. Conte, A., Niu, R.: Censoring in distributed radar tracking systems with various feedback models. In: 2015 18th International Conference on Information Fusion (Fusion), pp. 476–483 (2015)

    Google Scholar 

  7. Conte, A.S., Niu, R.: Censoring distributed nonlinear state estimates in radar networks. In: Pham, K.D., Chen, G. (eds.) Sensors and Systems for Space Applications IX, vol. 9838, pp. 127–142. International Society for Optics and Photonics, SPIE (2016)

    Google Scholar 

  8. Blasch, E.P., Darema, F., Ravela, S., Aved, A.J. (eds.): Handbook of Dynamic Data Driven Applications Systems: Volume 1. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-030-74568-4

    Book  Google Scholar 

  9. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM Algorithm. J. Royal Stat. Society: Series B (Methodological) 39(1), 1–22 (1977). https://doi.org/10.1111/j.2517-6161.1977.tb01600.x

    Article  MathSciNet  Google Scholar 

  10. Govaers, F., Koch, W.: An Exact solution to track-to-track-fusion at arbitrary communication rates. IEEE Trans. Aerosp. Electron. Syst. 48(3), 2718–2729 (2012). https://doi.org/10.1109/TAES.2012.6237623

    Article  Google Scholar 

  11. Julier, S.: An empirical study into the use of Chernoff information for robust, distributed fusion of Gaussian mixture models. In: 2006 9th International Conference on Information Fusion (Fusion) (July 2006)

    Google Scholar 

  12. Julier, S., Uhlmann, J.: A non-divergent estimation algorithm in the presence of unknown correlations. In: Proceedings of the American Control Conference, pp. 2369–2373 (1997)

    Google Scholar 

  13. Msechu, E.J., Giannakis, G.B.: Sensor-centric data reduction for estimation with WSNs via censoring and quantization. IEEE Trans. Signal Process. 60(1), 400–414 (2012)

    Article  MathSciNet  Google Scholar 

  14. Ong, L., Bailey, T., Durrant-Whyte, H., Upcroft, B.: Decentralised particle filtering for multiple target tracking in wireless sensor networks. In: Proceedings of 2008 11th International Conference on Information Fusion (June 2008)

    Google Scholar 

  15. Zheng, Y., Niu, R., Varshney, P.K.: Sequential Bayesian estimation with censored data for multi-sensor systems. IEEE Trans. Signal Process. 62(10), 2626–2641 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruixin Niu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Niu, R. (2024). Transmission Censoring and Information Fusion for Communication-Efficient Distributed Nonlinear Filtering. In: Blasch, E., Darema, F., Aved, A. (eds) Dynamic Data Driven Applications Systems. DDDAS 2022. Lecture Notes in Computer Science, vol 13984. Springer, Cham. https://doi.org/10.1007/978-3-031-52670-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52670-1_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52669-5

  • Online ISBN: 978-3-031-52670-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics