Abstract
This paper formulates a strategy for Driftcam, an ocean-going robot system, to observe and track the motion of an ocean biological phenomenon called the pelagic scattering layer, which consists of organisms that migrate vertically in the water column once per day. Driftcam’s horizontal motion is determined by the flow field and the vertical motion is regulated by onboard buoyancy control. In order to observe the evolution of the scattering layer, an ensemble Kalman filter is applied to estimate organism density; the density dynamics are propagated using the Perron-Frobenius operator. Multiple Driftcam are subject to depth regulation by open-loop and closed-loop controllers; a control strategy is proposed to track the peak of the density. Numerical simulations illustrate the efficacy of this strategy and motivate ongoing and future efforts to design a coordination formation algorithm for multi-agent Driftcam system to track the motion of the scattering layer, with implications for ocean monitoring.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Berkenpas, E.J., et al.: A buoyancy-controlled Lagrangian camera platform for in situ imaging of marine organisms in midwater scattering layers. IEEE J. Oceanic Eng. 43(3), 595–607 (2018). https://doi.org/10.1109/JOE.2017.2736138
Blanluet, A., et al.: Characterization of sound scattering layers in the Bay of Biscay using broadband acoustics, nets and video. PLoS ONE 14(10), 1–19 (2019). https://doi.org/10.1371/journal.pone.0223618
Brodeur, R., Pakhomov, E.: Nekton. In: Cochran, J.K., Bokuniewicz, H.J., Yager, P.L. (eds.) Encyclopedia of Ocean Sciences (Third Edition), pp. 582–587. Academic Press, Oxford, third edn. (2019)
Das, J., et al.: Coordinated sampling of dynamic oceanographic features with underwater vehicles and drifters. Int. J. Robot. Res. 31(5), 626–646 (2012). https://doi.org/10.1177/0278364912440736
Fiorelli, E., Leonard, N.E., Bhatta, P., Paley, D.A., Bachmayer, R., Fratantoni, D.M.: Multi-auv control and adaptive sampling in Monterey Bay. IEEE J. Oceanic Eng. 31, 935–948 (10 2006). https://doi.org/10.1109/JOE.2006.880429
Froyland, G., Padberg, K.: Almost-invariant sets and invariant manifolds-connecting probabilistic and geometric descriptions of coherent structures in flows. Physica D 238(16), 1507–1523 (2009). https://doi.org/10.1016/j.physd.2009.03.002
Gillijns, S., Mendoza, O., Chandrasekar, J., De Moor, B., Bernstein, D., Ridley, A.: What is the ensemble Kalman filter and how well does it work? In: Proceedings of the IEEE American Control Conference, pp. 4448–4453 (2006). https://doi.org/10.1109/ACC.2006.1657419
Goswami, D., Thackray, E., Paley, D.A.: Constrained Ulam dynamic mode decomposition: Approximation of the Perron-Frobenius operator for deterministic and stochastic systems. IEEE Control Syst. Lett. 2(4), 809–814 (2018). https://doi.org/10.1109/LCSYS.2018.2849552
Hansen, J., Manjanna, S., Li, A.Q., Rekleitis, I., Dudek, G.: Autonomous marine sampling enhanced by strategically deployed drifters in marine flow fields. In: Proceedings of the OCEANS MTS/IEEE Charleston, pp. 1–7 (2018). https://doi.org/10.1109/OCEANS.2018.8604873
Haëntjens, N., et al.: Detecting mesopelagic organisms using biogeochemical-argo floats. Geophys. Res. Lett. 47(6), e2019GL086088 (2020). https://doi.org/10.1029/2019GL086088
Hsieh, M.A., et al.: Small and adrift with self-control : Using the environment to improve autonomy. In: Proceedings of the International Symposium on Robotics Research, pp. 1–16 (2015). https://doi.org/10.1007/978-3-319-60916-4_22
Jaffe, J.S., et al.: A swarm of autonomous miniature underwater robot drifters for exploring submesoscale ocean dynamics. Nat. Commun. 8, 1–8 (2017). https://doi.org/10.1038/ncomms14189
Katzfuss, M., Stroud, J.R., Wikle, C.K.: Understanding the ensemble kalman filter. Am. Stat. 70(4), 350–357 (2016). https://doi.org/10.1080/00031305.2016.1141709
Klus, S., et al.: Data-driven model reduction and transfer operator approximation. J. Nonlinear Sci. 28(4), 985–1010 (2018)
Kularatne, D., Hsieh, A.: Tracking attracting lagrangian coherent structures in flows. In: Proceedings of Robotics: Science and Systems. Rome, Italy (July 2015). https://doi.org/10.15607/RSS.2015.XI.021
Lavery, A.C., Chu, D., Moum, J.N.: Measurements of acoustic scattering from zooplankton and oceanic microstructure using a broadband echosounder. ICES J. Marine Sci. 67(2), 379–394 (10 2009). https://doi.org/10.1093/icesjms/fsp242
Mandel, J.: A brief tutorial on the Ensemble Kalman Filter (2009). https://doi.org/10.48550/ARXIV.0901.3725, https://arxiv.org/abs/0901.3725
Michini, M., Hsieh, M.A., Forgoston, E., Schwartz, I.B.: Robotic tracking of coherent structures in flows. IEEE Trans. Rob. 30(3), 593–603 (2014). https://doi.org/10.1109/TRO.2013.2295655
Roemmich, D., et al.: On the future of argo: a global, full-depth, multi-disciplinary array. Front. Marine Sci. 6 (2019). https://doi.org/10.3389/fmars.2019.00439
Seki, M.P., Polovina, J.J.: Ocean gyre ecosystems. In: Cochran, J.K., Bokuniewicz, H.J., Yager, P.L. (eds.) Encyclopedia of Ocean Sciences (Third Edition), pp. 753–758. Academic Press, Oxford, third edition edn. (2019)
Subbaraya, S., et al.: Circling the seas: design of Lagrangian drifters for ocean monitoring. IEEE Robot. Autom. Mag. 23, 42–53 (2016)
Suitor, R., Berkenpas, E., Shepard, C.M., Abernathy, K., Paley, D.A.: Dynamics and control of a buoyancy-driven underwater vehicle for estimating and tracking the scattering layer. In: Proceedings of the IEEE American Control Conference (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wei, C., Paley, D.A. (2024). Distributed Estimation of the Pelagic Scattering Layer Using a Buoyancy Controlled Robotic System. In: Blasch, E., Darema, F., Aved, A. (eds) Dynamic Data Driven Applications Systems. DDDAS 2022. Lecture Notes in Computer Science, vol 13984. Springer, Cham. https://doi.org/10.1007/978-3-031-52670-1_25
Download citation
DOI: https://doi.org/10.1007/978-3-031-52670-1_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-52669-5
Online ISBN: 978-3-031-52670-1
eBook Packages: Computer ScienceComputer Science (R0)