Skip to main content

Adversarial Forecasting Through Adversarial Risk Analysis Within a DDDAS Framework

  • Conference paper
  • First Online:
Dynamic Data Driven Applications Systems (DDDAS 2022)

Abstract

Forecasting methods typically assume clean and legitimate data streams. However, adversaries’ manipulation of digital data streams could alter the performance of forecasting algorithms and impact decision quality. In order to address such challenges, we propose a dynamic data driven application systems (DDDAS) based decision making framework that includes an adversarial forecasting component. Our framework utilizes the adversarial risk analysis principles that allow considering incomplete information and uncertainty. It is demonstrated using a load forecasting example. We solve the adversary’s decision problem in which he poisons data to alter an auto regressive forecasting algorithm output, and discuss defender strategies addressing the attack impact.

This work is supported by Air Force Scientific Office of Research (AFOSR) award FA-9550-21-1-0239 and AFOSR European Office of Aerospace Research and Development award FA8655-21-1-7042. J.M.C. is supported by a fellowship from ”la Caixa” Foundation (ID100010434), whose code is LCF/BQ/DI21/11860063. Any opinions, findings, and conclusions or recommendations expressed are those of the authors and do not necessarily reflect the views of the sponsors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available at www.ercot.com.

References

  1. Alfeld, S., Zhu, X., Barford, P.: Data poisoning attacks against autoregressive models. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30 (2016)

    Google Scholar 

  2. Alfeld, S., Zhu, X., Barford, P.: Explicit defense actions against test-set attacks. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  3. Barreto, C., Koutsoukos, X.: Design of load forecast systems resilient against cyber-attacks. In: Alpcan, T., Vorobeychik, Y., Baras, J., Dan, G. (eds.) Decision and Game Theory for Security. Lecture Notes in Computer Science(), vol. 11836, pp. 1–20. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32430-8_1

    Chapter  Google Scholar 

  4. Blasch, E., Ravela, S., Aved, A.: Handbook of Dynamic Data Driven Applications Systems. Springer, Cham (2018)

    Google Scholar 

  5. Brückner, M., Kanzow, C., Scheffer, T.: Static prediction games for adversarial learning problems. J. Mach. Learn. Res. 13(1), 2617–2654 (2012)

    MathSciNet  Google Scholar 

  6. Brückner, M., Scheffer, T.: Stackelberg games for adversarial prediction problems. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 547–555 (2011)

    Google Scholar 

  7. Caballero, W.N., Friend, M., Blasch, E.: Adversarial machine learning and adversarial risk analysis in multi-source command and control. Sig. Proc., Sens./Inf. Fus. Target Recogn. XXX 11756, 98–108 (2021)

    Google Scholar 

  8. Caballero, W.N., Lunday, B.J., Deckro, R.F., Pachter, M.N.: Informing national security policy by modeling adversarial inducement and its governance. Socioecon. Plann. Sci. 69, 100709 (2020)

    Article  Google Scholar 

  9. Caballero, W.N., Camacho, J.M., Ekin, T., Naveiro, R.: Manipulating hidden-Markov-model inferences by corrupting batch data. Comput. Oper. Res. 162, 106478 (2024)

    Google Scholar 

  10. Chen, Y., Zhu, X.: Optimal attack against autoregressive models by manipulating the environment. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3545–3552 (2020)

    Google Scholar 

  11. Chen, Y., Tan, Y., Zhang, B.: Exploiting vulnerabilities of load forecasting through adversarial attacks. In: Proceedings of the Tenth ACM International Conference on Future Energy Systems, pp. 1–11 (2019)

    Google Scholar 

  12. Combita, L.F., Giraldo, J.A., Cardenas, A.A., Quijano, N.: DDDAS for attack detection and isolation of control systems. In: Blasch, E., Ravela, S., Aved, A. (eds.) Handbook of Dynamic Data Driven Applications Systems, pp. 407–422. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95504-9_17

    Chapter  Google Scholar 

  13. Darema, F.: Dynamic data driven applications systems: a new paradigm for application simulations and measurements. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) Computational Science - ICCS 2004. Lecture Notes in Computer Science, vol. 3038, pp. 662–669. Springer, Berlin (2004). https://doi.org/10.1007/978-3-540-24688-6_86

    Chapter  Google Scholar 

  14. Darema, F., Blasch, E., Ravela, S., Aved, A.: Dynamic Data Driven Applications Systems: Third International Conference, DDDAS 2020, Boston, MA, USA, October 2–4, 2020, Proceedings, vol. 12312. Springer Nature, Cham (2020). https://doi.org/10.1007/978-3-030-61725-7

  15. Dsouza, G., Hariri, S., Al-Nashif, Y., Rodriguez, G.: Resilient dynamic data driven application systems (rDDDAS). Procedia Comput. Sci. 18, 1929–1938 (2013)

    Article  Google Scholar 

  16. Ekin, T., Cabellaro, W.N., Camacho, J.M., Naveiro, R.: Adversarial forecasting: a decision theoretic approach (2022)

    Google Scholar 

  17. Ekin, T., Damien, P., Zarnikau, J.: Estimating marginal effects of key factors that influence wholesale electricity demand and price distributions in Texas via quantile variable selection methods. J. Energy Markets 13(1), 1–29 (2020)

    Google Scholar 

  18. Ekin, T., Naveiro, R., Insua, D.R., Torres-Barrán, A.: Augmented probability simulation methods for sequential games. Eur. J. Oper. Res. (2022). https://doi.org/10.1016/j.ejor.2022.06.042

    Article  Google Scholar 

  19. Insua, D.R., Naveiro, R., Gallego, V., Poulos, J.: Adversarial machine learning: perspectives from adversarial risk analysis. arXiv preprint: arXiv:2003.03546 (2020)

  20. Lee, C.M., Ko, C.N.: Short-term load forecasting using lifting scheme and ARIMA models. Expert Syst. Appl. 38(5), 5902–5911 (2011)

    Article  Google Scholar 

  21. Li, X., Miller, D.J., Xiang, Z., Kesidis, G.: A scalable mixture model based defense against data poisoning attacks on classifiers. In: Darema, F., Blasch, E., Ravela, S., Aved, A. (eds.) Dynamic Data Driven Applications Systems. Lecture Notes in Computer Science(), vol. 12312, pp. 262–273. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61725-7_31

    Chapter  Google Scholar 

  22. Nguyen, H., Hansen, C.K.: Short-term electricity load forecasting with time series analysis. In: 2017 IEEE International Conference on Prognostics and Health Management (ICPHM), pp. 214–221. IEEE (2017)

    Google Scholar 

  23. Xiong, L., Sunderam, V., Fan, L., Goryczka, S., Pournajaf, L.: Privacy and security issues in DDDAS systems. In: Blasch, E.P., Darema, F., Ravela, S., Aved, A.J. (eds.) Handbook of Dynamic Data Driven Applications Systems, pp. 615–630. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-74568-4_27

    Chapter  Google Scholar 

  24. Yao, L., Tunc, C., Satam, P., Hariri, S.: Resilient machine learning (rML) ensemble against adversarial machine learning attacks. In: Darema, F., Blasch, E., Ravela, S., Aved, A. (eds.) Dynamic Data Driven Applications Systems. Lecture Notes in Computer Science(), vol. 12312, pp. 274–282. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61725-7_32

    Chapter  Google Scholar 

  25. Zhou, X., Canady, R., Li, Y., Koutsoukos, X., Gokhale, A.: Overcoming stealthy adversarial attacks on power grid load predictions through dynamic data repair. In: Darema, F., Blasch, E., Ravela, S., Aved, A. (eds.) Dynamic Data Driven Applications Systems. Lecture Notes in Computer Science(), vol. 12312, pp. 102–109. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61725-7_14

    Chapter  Google Scholar 

  26. Zhou, X., et al.: Evaluating resilience of grid load predictions under stealthy adversarial attacks. In: 2019 Resilience Week (RWS), vol. 1, pp. 206–212. IEEE (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahir Ekin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ekin, T., Naveiro, R., Rodriguez, J.M.C. (2024). Adversarial Forecasting Through Adversarial Risk Analysis Within a DDDAS Framework. In: Blasch, E., Darema, F., Aved, A. (eds) Dynamic Data Driven Applications Systems. DDDAS 2022. Lecture Notes in Computer Science, vol 13984. Springer, Cham. https://doi.org/10.1007/978-3-031-52670-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52670-1_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52669-5

  • Online ISBN: 978-3-031-52670-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics