Abstract
The DDDAS2022 Conference featured five keynote presentations, and an invited talk, which addressed important science and technology topics, and provided examples of advances in capabilities enabled or supported by DDDAS-based methods. The presentations covered a ange of areas such as: aerospace systems, cyber-security, bio-infomatics and genomics, and adverse environmental events. Together with the present overview, papers contributed by the keynote speakers are included in these proceedings. In addition, the keynotes’ slides are available at www.1dddas.org.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Darema, F., Blasch, E., Ravela, S., Aved, A. (eds.) Dynamic Data Driven Applications Systems: Third International Conference on DDDAS 2020, Boston, MA, USA, 2–4 October (2020)
Blasch, E., Ravela, S., Aved, A. (eds.): Handbook of Dynamic Data Driven Applications Systems. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95504-9
Blasch, E.P., Darema, F., Ravela, S., Aved, A.J. (eds.) Handbook of Dynamic Data Driven Applications Systems. Springer, Cham (2022). https://doi.org/10.1007/978-3-319-95504-9
Darema, F., Blasch, E.P., Ravela, S., Aved, A.J. (eds.) Handbook of Dynamic Data Driven Applications Systems. Springer, Cham (2023). https://doi.org/10.1007/978-3-030-74568-4
Korobenko, A., Hsu, M.-C., Bazilevs, Y.: A computational steering framework for large-scale composite structures: part i—parametric-based design and analysis. In: Blasch, E.P., Darema, F., Ravela, S., Aved, A.J. (eds.) Handbook of Dynamic Data Driven Applications Systems, vol. 1, pp. 163–180. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-030-74568-4_8
Korobenko, A., Pigazzini, M., Deng, X., Bazilevs, Y.: Multiscale DDDAS framework for damage prediction in aerospace composite structures. In: Blasch, E., Ravela, S., Aved, A. (eds.) Handbook of Dynamic Data Driven Applications Systems, pp. 677–696. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95504-9_30
Bazilevs, Y., Deng, X., Korobenko, A., Lanza di Scalea, F., Todd, M.D., Taylor, S.G.: Isogeometric fatigue damage prediction in large-scale composite structures driven by dynamic sensor sata. J. Appl. Mech. 82(9) (2015)
Korobenko, A., et al.: Dynamic-data-driven damage prediction in aerospace composite structures. In: AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2016
Y. Bazilevs, J. Yan, X. Deng, X. et al. Computer Modeling of Wind Turbines: 2. Free-Surface FSI and Fatigue-Damage. Arch Computat Methods Eng 26, 1101–1115, 2019
Carlone, L., Axelrod, A., Karaman, S., Chowdhary, G.: Aided optimal search: data-driven target pursuit from on-demand delayed binary observations. In: Blasch, E.P., Darema, F., Ravela, S., Aved, A.J. (eds.) Handbook of Dynamic Data Driven Applications Systems: Volume 1, pp. 303–343. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-030-74568-4_14
Carlone, L., Axelrod, A., Karaman, S., Chowdhary, G.: Data-driven prediction of confidence for EVAR in time-varying datasets. In: Blasch, E.P., Darema, F., Ravela, S., Aved, A.J. (eds.), Handbook of Dynamic Data Driven Applications Systems, vol. 1, 2nd ed. pp 389–412. Springer (2022). https://doi.org/10.1007/978-3-030-74568-4_16
Ryou, G., Tal, E., Karaman, S.: Multi-fidelity black-box optimization for time-optimal quadrotor maneuvers. Inter. J. Robotics Res. 40(12–14), 1352–1369 (2021)
Tal, E., Karaman, S.: Accurate tracking of aggressive quadrotor trajectories using incremental nonlinear dynamic inversion and differential flatness. IEEE Trans. Control Syst. Technol. 29(3), 1203–1218 (2020)
Tal, E., Ryou, G., Karaman, S.: Aerobatic trajectory generation for a vtol fixed-wing aircraft using differential flatness. arXiv preprint arXiv:2207.03524, (2022)
Ruzicka, W.B.: Single-cell dissection of schizophrenia reveals neurodevelopmental-synaptic axis and transcriptional resilience. 2020. Single-cell dissection of schizophrenia reveals neurodevelopmental-synaptic axis and transcriptional resilience | medRxiv
Alhajjar, E., Maxwell, P., Bastian, N.: Adversarial machine learning in network intrusion detection systems. Expert Syst. Appli. 186 (2021)
Levinson, R., Niemoeller, S., Nag, S., Ravindra, V.: Planning satellite swarm measurements for earth science models: comparing constraint processing and MILP methods. In: Proceedings of the International Conference on Automated Planning and Scheduling, vol. 32, pp. 471–479 (2022)
Melebari, A., Nag, S., Ravindra, V., Moghaddam, M.: Soil moisture retrieval from multi-instrument and multi-frequency simulated measurements in support of future earth observing systems. In: International Geoscience and Remote Sensing Symposium, pp. 5594–5597 (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Darema, F., Blasch, E. (2024). DDDAS2022 Keynotes - Overview. In: Blasch, E., Darema, F., Aved, A. (eds) Dynamic Data Driven Applications Systems. DDDAS 2022. Lecture Notes in Computer Science, vol 13984. Springer, Cham. https://doi.org/10.1007/978-3-031-52670-1_33
Download citation
DOI: https://doi.org/10.1007/978-3-031-52670-1_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-52669-5
Online ISBN: 978-3-031-52670-1
eBook Packages: Computer ScienceComputer Science (R0)