
ar
X

iv
:2

30
6.

11
30

3v
2

 [
cs

.C
R

]
 7

 S
ep

 2
02

3

BASS: Boolean Automorphisms Signature

Scheme

Dima Grigoriev1, Ilia Ilmer2, Alexey Ovchinnikov3, and Vladimir Shpilrain4

1 CNRS, Mathématiques, Université de Lille, 59655, Villeneuve d’Ascq, France
Dmitry.Grigoryev@univ-lille.fr

2 Department of Computer Science, CUNY Graduate Center, 365 5th Ave, New
York, NY 10016 i.ilmer@icloud.com

3 Department of Mathematics, Queens College, City University of New York,
Queens, NY 11367 alexey.ovchinnikov@qc.cuny.edu

4 Department of Mathematics, The City College of New York, New York, NY 10031
shpilrain@yahoo.com

Abstract. We offer a digital signature scheme using Boolean automor-
phisms of a multivariate polynomial algebra over integers. Verification
part of this scheme is based on the approximation of the number of zeros
of a multivariate Boolean function.

Keywords: digital signature · multivariate polynomial · Boolean func-
tion

1 Introduction

Due to the concern that if large-scale quantum computers are ever built, they
will compromise the security of many commonly used cryptographic algorithms,
NIST had begun in 2016 a process to develop new cryptography standards and,
in particular, solicited proposals for new digital signature schemes [5] resistant
to attacks by known quantum algorithms, such as e.g. Shor’s algorithm [6]. In
particular, there is an interest in signature schemes whose security is based on
new assumptions.

One possible way to avoid quantum attacks based on solving the hidden sub-
group problem (including the attacks in [6]) is not to use one-way functions that
utilize one or another (semi)group structure. The candidate one-way function
that we use in our scheme here takes a private polynomial automorphism ϕ as
the input and outputs ϕ(P) for a public multivariate polynomial P .

To avoid any parallels with the encryption scheme of [4], we say up front
that since ours is just a signature scheme (i.e., is not a spin-off of any encryption
scheme), we do not need our candidate one-way function to have a trapdoor
because the private key holder does not need to invert the function. Also, in [4],
the candidate one-way function was ϕ itself, and the private (decryption) key
was ϕ−1. In contrast, in our signature scheme ϕ−1 does not play any role and
does not have to be computed.

http://arxiv.org/abs/2306.11303v2

2 Grigoriev et al.

The main novelty of our signature scheme is manifested in the verification
part. First, note that any polynomial P has as many zeros as ϕ(P) does, where
ϕ is any automorphism of the polynomial algebra. To balance between security
and efficiency, we do not want the number of zeros to be either too small or too
large. To that end, we use polynomials over integers, but we count zero values
on Boolean tuples only. Since the number of Boolean tuples is exponential in the
number of variables, it can still be too large to process deterministically. Instead,
we use a non-deterministic (Monte Carlo) method to estimate the number of zero
(or nonzero) values of a polynomial in question. We note that the accuracy of
the Monte Carlo method for estimating the number of zeros of a multivariate
polynomial was studied and quantified in [1].

2 Scheme description

Let K = Z[x1, . . . , xn] denote the algebra of polynomials in n variables over the
ring Z of integers, and let B(K) denote the factor algebra of K by the ideal
generated by all polynomials of the form (x2

i − xi), i = 1, . . . , n. Informally,
one can call B(K) the “Booleanization" of K. We note that the ring B(K) is
isomorphic (as a ring) to the direct sum of 2n copies of the ring Z.

The signature scheme is as follows.

Private: an automorphism ϕ of the algebra B(K). We note that ϕ is defined
by the polynomials yi = ϕ(xi), i = 1, . . . , n.

Public:
– 3 sparse polynomials Pi = Pi(x1, . . . , xn) with coefficients ±1.
– 3 polynomials ϕ(Pi), where ϕ is a private automorphism of the algebra B(K).
We note that ϕ(Pi) = Pi(y1, . . . , yn), where yi = ϕ(xi).
– a hash function H with values in the algebra B(K) and a (deterministic)
procedure for converting values of H to sparse polynomials from the algebra
B(K).
– a set G of polynomials. This set includes, in particular, all monomials and all
polynomials of the form (1-monomial). See Section 4) for more details.

Remark 1. We emphasize that the automorphism ϕ, the 3 sparse polynomials
Pi, and the 3 polynomials ϕ(Pi) are all generated/computed in the offline phase.
The hash function H is one of the standard hash functions (we suggest SHA3-
256), with values converted to a polynomial in B(K) (see Section 3.3).

Signing a message m:

1. Apply the hash function H to the message m. Convert H(m) to a polyno-
mial Q = Q(x1, . . . , xn+1) with integer coefficients using a deterministic public
procedure (see Section 3.3). That is, the polynomial Q has an extra variable
compared to the polynomials Pi.

BASS: Boolean Automorphisms Signature Scheme 3

2. The automorphism ϕ is extended to the “Booleanization" of the algebra
Z[x1, . . . , xn+1] by taking xn+1 to xn+1 + r(x1, . . . , xn) − 2xn+1 · r(x1, . . . , xn),
where r(x1, . . . , xn) is a random polynomial from the set G of polynomials (see
Section 4). This extended automorphism we denote by the same letter ϕ. (The
fact that this is, indeed, an automorphism of the “Booleanization" is part of
Proposition 1 in Section 4.)

3. The signature is ϕ(Q).

Remark 2. The reason why we extend the automorphism ϕ by adding an extra
variable xn+1 at Step 2 is to prevent the forger from accumulating many pairs
(Q,ϕ(Q)) with the same ϕ. Now, with each new signature, we have a different
ϕ because of a random choice of the polynomial r(x1, . . . , xn) at Step 2.

Verification:

1. The verifier computes H(m) and converts H(m) to Q = Q(x1, . . . , xn+1)
using a deterministic public procedure.

2. The verifier selects a random 4-variable polynomial u(x, y, z, t) from B(Z[x, y, z, t])
with coefficients 0, 1, -1, 2, or -2, and computes u(ϕ(P1), ϕ(P2), ϕ(P3), ϕ(Q)).
Note that this is equal to ϕ(u(P1, P2, P3, Q)). Denote the polynomial ϕ(u(P1, P2, P3, Q))
by S.

3. The verifier also computes u(P1, P2, P3, Q). Denote this polynomial by R.
(Note that S should be equal to ϕ(R) if the signature is valid.)

4. The verifier then compares the proportion of positive values on Boolean tuples
for the polynomials R and S. That is, the proportion of positive values on (n+1)-
tuples (x1, . . . , xn+1), where each xi is 0 or 1. These proportions are estimated
using a non-deterministic (Monte Carlo) method.

The verifier accepts the signature if and only if these proportions for R and S

are different in no more than 3% of the total number of trials in the Monte Carlo
method. (See Section 4 for an explanation of why these proportions should be
exactly the same when computed deterministically if S is an automorphic image
of R.)

Remark 3. With suggested parameters, the number of Boolean (n + 1)-tuples
is quite large (2n+1, to be exact). Given that counting zeros (or non-zeros) on
Boolean tuples is #P-hard, see [7], it is computationally hard to count the num-
ber of positive values on Boolean tuples precisely, which is why the verifier has
to use a non-deterministic method. We explain the method in the following sub-
section.

Correctness. While it is obvious that polynomials P and ϕ(P) have the same
number of zeros, it is not at all obvious why they have the same number of
positive values on Boolean tuples. Indeed, this may not be true for an arbitrary
automorphism ϕ, so we have a special algorithm for sampling ϕ. This is explained
in Section 4, and correctness is formally proved in the Appendix.

4 Grigoriev et al.

2.1 Monte Carlo method for counting positive values of a
polynomial on Boolean tuples

Our non-deterministic method for estimating the proportion of positive values
on Boolean tuples for a given polynomial P is pretty standard. Just plug in a
large number of random Boolean tuples into P and count how many of them
yield a positive value of P . Then divide the obtained number by the total number
of Boolean tuples used; this is your proportion.

We note that the accuracy of the Monte Carlo method for counting zeros of
Boolean polynomials was studied and quantified in [1]. See our Section 6.1 for
more details on the accuracy.

3 Key generation

First we note that, since the algebra B(K) is the factor algebra of K by the ideal
generated by all polynomials of the form (x2

i −xi) and since we only count values
of a polynomial on Boolean tuples, when we generate the public polynomials Pi

it makes sense to only generate monomials where no xj occurs with an exponent
higher than 1. Then generating Pi will look as follows.

3.1 Generating a random t-sparse polynomial

1. Select, uniformly at random, an integer d between 1 and b (where b is one
of the parameters of the scheme). This integer will be the degree of our
monomial. (Note that the degree of a monomial cannot be higher than n since
our monomials are square-free because of factoring by the ideal generated
by all polynomials of the form (x2

i − xi).)

2. To select a monomial of degree d, do a selection of xi, uniformly at ran-
dom from {x1, . . . , xn}, d times, avoiding repetition of xi. Then build the
monomial as a product of the selected xi.

3. Finally, build a t-sparse polynomial as a linear combination of t selected
monomials with coefficients ±1, selected at random.

3.2 Generating a random polynomial from the set G

The set G of polynomials in Z[x1, . . . , xn] will play a crucial role in generating
automorphisms of the algebra B(K), see Section 4. This set can be defined
recursively as follows. Assign all variables x1, . . . , xn to G. Then keep adding
more polynomials to G using the following rules: (1) if a polynomial P belongs
to G, then 1 − P belongs to G, too; (2) if both polynomials P1 and P2 belong
to G, then their product P1P2 belongs to G, too.

Remark 4. The number of multiplications in the above procedure for generating
a polynomial from the set G (see Step 3 in the procedure below) is one of the
parameters of our scheme; denote it by r.

BASS: Boolean Automorphisms Signature Scheme 5

Note that the set G consists of polynomials P such that P (x1, . . . , xn) = 0 or
1 for any Boolean n-tuple (x1, . . . , xn). This easily follows by induction from the
above recursive definition of the set G. In other words, any polynomial from G

induces an n-variable Boolean function and, conversely, any n-variable Boolean
function is induced by a polynomial from G.

Based on this description, we suggest the following procedure for sampling a
polynomial, depending on variables from a subset X of the set of variables, from
the set G. We emphasize again that in our scheme, this is done in the offline
phase.

1. Select a random monomial as in the previous Section 3.1, except that the
degree d should be really small, 1 or 2. Denote this monomial by M .

2. With probability 1

2
, select between M and 1−M . Denote the result by M ′.

3. Select, uniformly at random, a variable xi not from the subset X of variables.
Then, with probability 1

2
, multiply M ′ by either xi or 1− xi.

4. Repeat steps (2) through (3) r times for some small r (one of the parameters
of the scheme).

3.3 Converting H(m) to a polynomial

We suggest using a hash function H from the SHA-3 family, specifically SHA3-
256. We assume the security properties of SHA3-256, including collision resis-
tance and preimage resistance. Below is an ad hoc procedure for converting a
hash H(m) to a polynomial. We assume there is a standard way to convert H(m)
to a bit string of length 256.

Let B be a bit string of length 256. We will convert B to a polynomial
from the factor algebra of K = Z[x1, . . . , xn+1] by the ideal generated by all
polynomials of the form (x2

i − xi), i = 1, . . . , n+ 1. We note that this process is
deterministic.

(1) Split 256 bits in 32 8-bit blocks. The 5 leftmost bits will be responsible for
a coefficient of the corresponding monomial, while the 3 rightmost bits will be
responsible for a collection of variables xi in the monomial.

(2) After Step (1), we have 32 3-bit blocks corresponding to monomials of degree
3 that we now have to populate with 3 variables each. Enumerate 96 bits in these
32 3-bit blocks by x1, . . . , x32, x1, . . . , x32, x1, . . . , x32 (in this order, going left to
right). Now each 3-bit block is converted to a monomial that is a product of xi

corresponding to the places in the bit string where the bit is “1". In particular,
each monomial will be of degree at most 3.

(3) Now we have to use 5 remaining bits in each 8-bit block to obtain an integer
coefficient for each monomial of degree ≤ 3 obtained at Step 2. This is done as
follows. First, we compute the sum of these 5 bits. Then, we reduce it modulo 3.
If the result is 0, then the coefficient is 0. If the result is 1, then the coefficient
is 1. If the result is 2, then the coefficient is -1.

(4) Combine all monomials and coefficients obtained at Steps (2), (3) into a
polynomial.

6 Grigoriev et al.

4 Generating an automorphism ϕ

An automorphism ϕ is generated offline, as follows.

Recall that the set G consists of polynomials P such that P (x1, . . . , xn) = 0
or 1 for any Boolean n-tuple (x1, . . . , xn), see Section 3.2.

Then we have:

Proposition 1. Let h = h(x1, . . . , xn) be a polynomial from the set G. Suppose
h does not depend on xk. Let α be the map that takes xk to xk + h− 2xk · h and
fixes all other variables. Then:
(a) α defines an automorphism of B(K), the factor algebra of the algebra Z[x1, . . . , xn]
by the ideal generated by all polynomials of the form (x2

i − xi), i = 1, . . . , n. De-
note this automorphism also by α.

(b) The group of automorphisms of B(K) is generated by all automorphisms as
in part (a) and is isomorphic to the group of permutations of the vertices of the
n-dimensional Boolean cube.

(c) For any polynomial P from Z[x1, . . . , xn], the number of positive values of
P on Boolean tuples (x1, . . . , xn) equals that of α(P).

For the proof of Proposition 1, see the Appendix.

4.1 Generating triangular automorphisms

Our (private) automorphism ϕ will be a composition of “triangular" automor-
phisms and permutations on the set of variables. Below is how we generate an
“upper triangular" automorphism α.

(1) Let k = 1.

(2) With probability 1

2
, either take xk to itself or take xk to xk+h(x1, . . . , xn)−

2xk · h(x1, . . . , xn), where h(x1, . . . , xn) is a random t-sparse polynomial from
the set G not depending on any xj with j ≤ k (see Section 3.2). Fix all other
variables.

(3) If k < n, increase k by 1 and go to Step (2). Otherwise, stop.

Generating a “lower triangular" automorphism β is similar:

(1) Let k = n.

(2) With probability 1

2
, either take xk to itself or take xk to xk+h(x1, . . . , xn)−

2xk · h(x1, . . . , xn), where h(x1, . . . , xn) is a random t-sparse polynomial from
the set G not depending on xj with j ≥ k. Fix all other variables.

(3) If k > 1, decrease k by 1 and go to Step (2). Otherwise, stop.

BASS: Boolean Automorphisms Signature Scheme 7

4.2 Generating ϕ as a composition of triangular automorphisms
and permutations

Having generated an upper triangular automorphism α and a lower triangular
automorphism β, we generate our private automorphism ϕ as a composition
αβπ, where π is a random permutation on the set of variables. Here α is applied
first, followed by β, followed by π.

At the end of the whole procedure, we will have n polynomials yi = ϕ(xi)
that define the automorphism ϕ.

5 Suggested parameters

For the hash function H , we suggest SHA3-256.
For the number n of variables, we suggest n = 31.
For the number t of monomials in t-sparse polynomials, we suggest t = 3.
For the bound b on the degree of monomials in t-sparse polynomials, we suggest
b = 3.
For the degree d of the monomial M in the procedure for generating a polynomial
from the set G (Section 3.2), we suggest d = 2.
For the number r of the number of multiplications in the procedure for generating
a polynomial from the set G (Section 3.2), we suggest r = 1.
For the number of trials in Monte Carlo method for counting positive values of
a polynomial on Boolean tuples, we suggest 3,000.

6 Performance and signature size

For our computer simulations, we used Apple MacBook Pro, M1 CPU (8 Cores),
16 GB RAM computer. Julia code is available, see [2].

With the suggested parameters, signature verification takes about 0.3 sec on
average, which is not bad, but the polynomial ϕ(Q) (the signature) is rather
large, almost 4 Kb on average.

The size of the private key (the automorphism ϕ) is about 1.5 Kb, and the
size of the public key is about 12.5 Kb.

We note that we have measured the size of a signature, as well as the size of
private/public keys, as follows. We have counted the total number of variables
that occurred in relevant polynomial(s) and multiplied that number by 5, the
number of bits sufficient to describe the index of any variable (except x32). To
that, we added the number of monomials times 3 (the average number of bits
needed to describe a coefficient at a monomial in our construction(s).

As usual, there is a trade-off between the size of the private key ϕ and its
security. The size of ϕ can be reduced to just a few hundred monomials, but
then security becomes a concern since some of ϕ(xi) may be possible to recover
more or less by inspection of the public pairs (Pi, ϕ(Pi)).

In the table below, we have summarized performance data for most reason-
able (in our opinion) parameter sets. Most columns are self-explanatory; the last
column shows memory usage during verification.

8 Grigoriev et al.

Performance metrics for various parameter values
#
mono-
mials in
Pi

max
degree
of Pi

max de-
gree of
mono-
mials M

parameter
r

verification
time (sec)

signature
size
(Kbytes)

public
key size
(Kbytes)

private
key size
(Kbytes)

memory
usage
(Mbytes)

3 3 1 1 0.3 4.3 17.5 1.2 5.7
3 3 2 1 0.3 3.7 12.6 1.6 5.7
3 4 1 1 0.5 4.3 25 1.2 5.8
4 3 1 1 4.1 4.2 38 1.25 7.1
5 3 1 1 6.2 6 46 1.3 8.2
3 3 1 2 2 20 56 5.5 6.3

6.1 Accuracy of the Monte Carlo method

We have run numerous computer simulations to estimate the probability of a
“false positive" result, in particular accepting a forged signature from somebody
who knows only some of ϕ(xi). In our experiments, the difference between the
number of positive values of u and u′ for a u′ obtained by using a wrong private
key ϕ was always above 9%. Recall that the threshold difference for accepting a
signature in our scheme is 3%.

“False negative" results (i.e., rejecting a valid signature because the difference
was more than 3%) are not as critical as “false positive" results are, but it is still
better to avoid them. Increasing the number of trials in the Monte Carlo method
obviously reduces the probability of false negative (as well as false positive)
results. To quantify this statement, one can use the formula from [1, Theorem
1]:

N ≥ C ·
4 log(2

δ
)

ǫ2
(1)

for some constant C. Here δ is the probability that the Monte Carlo method
gives a wrong answer, and ǫ is the accuracy we want. (In our case, ǫ = 3% =
0.03.) Then, N is the number of trials needed to provide the desired accuracy
with the desired probability.

According to our computer simulations, in 1000 trials there is one false neg-
ative result on average. This suggests that the constant C in our situation is
about 0.02.

Therefore, with the recommended 3000 trials the probability of a false neg-
ative result will be about 2−33.

Thus, it is not surprising that with 3000 trials, we did not detect any false
negative or false positive results in any of our computer simulations.

7 What is the hard problem here?

Recall that the candidate one-way function that we use in our scheme takes a
private polynomial automorphism ϕ as the input and outputs ϕ(P) for a public

BASS: Boolean Automorphisms Signature Scheme 9

multivariate polynomial P . Thus, the (allegedly) hard problem here is: given a
public pair (or several pairs) (P, ϕ(P)), recover ϕ. We note that such a ϕ does
not have to be unique, although most of the time it is.

The problem of recovering ϕ from a pair (P, ϕ(P)), as well as the relevant
decision problem to find out whether or not, for a given pair of polynomials
(P,Q), there is an automorphism that takes P to Q, was successfully addressed
only for two-variable polynomials [3]. For polynomials in more than two variables
the problem is unapproachable at this time, and there are no even partial results
in this direction. This is, in part, due to the fact that there is no reasonable
description of the group of automorphisms of Z[x1, . . . , xn] when n > 2, so even a
“brute force" approach based on enumerating all automorphisms is inapplicable.

Of course, in a cryptographic context one is typically looking not for gen-
eral theoretical results, but rather for practical ad hoc, often non-deterministic,
attacks. The most straightforward non-deterministic attack that comes to mind
here is as follows. Recall that monomials in the polynomial P have low degree
(bounded by 3). Thus, given a monomial, say, x1x2x3 in the polynomial P , one
can try to replace each xi by a hypothetical ϕ(xi) of the form

∑

(cixi+cijxixj+
cijkxixjxk), with indeterminate coefficients ci, cij , cijk. Given that ϕ is “sparse",
this may yield a number of equations in the indeterminate coefficients that is not
huge. However, these equations will include not just linear equations, but also
equations of degree 2 and 3 (since ϕ(x1x2x3) = ϕ(x1)ϕ(x2)ϕ(x3)), and given a
large number (hundreds) of unknowns ci, cij , cijk, there is no computationally
feasible way known to solve such a system.

In the next Section 8, we offer a “linearization" of this attack where all equa-
tions become linear, at the expense of making the number of unknowns and the
number of equations very large.

8 Linear algebra attack

One can attempt to recover the private automorphism ϕ from the public pairs
(Pi, ϕ(Pi)) by using linear algebra, more specifically by trying to replace ϕ by a
linear transformation of the linear space of monomials involved in Pi and in the
polynomials ϕ(xi). The latter polynomials are not known to the adversary, but
at least the degrees of monomials in those polynomials can be bounded based
on the public polynomials ϕ(Pi).

Let us compute the dimension of the linear space of monomials of degree at
most 27 in 31 variables. This is because a polynomial Pi has monomials of degree
at most 3, and in the polynomials ϕ(xi) there can be monomials of degree up to
9 (with the suggested parameters), so in ϕ(Pi) there can be monomials of degree
up to 27.

By a well-known formula of counting combinations with repetitions, the
number of monomials of degree at most 27 in 31 variables is equal to

(

57

30

)

≈ 1.4 · 1016 > 253. This is how many variables the attacker will have should
(s)he use a linear algebra attack. The number of equations will be about triple
of this number.

10 Grigoriev et al.

Solving a system of linear equations with that many variables and equations
would require more than 253·2.3 ≈ 2122 arithmetic operations, according to our
understanding of the state-of-the-art in solving systems of linear equations.

We note that increasing the number of variables in the polynomial algebra will
not seriously affect efficiency as long as the bound on the degrees of monomials
remains the same. At the same time, the more variables the less feasible the
linear algebra attack is.

9 Security claims

The linear algebra “brute force" attack amounts to solving a system of linear
equations (over Z) with about 253 variables and at least as many equations.

There could be ad hoc attacks on the public key aiming at recovering some
of the ϕ(xi), but recovering only some of ϕ(xi) does not make the probability of
passing verification non-negligible, according to our computer simulations.

We have not been able to come up with any meaningful ideas of forgery
without getting a hold of the private key.

As for quantum security, we do not make any general claims, just mention
that since there are no abelian (semi)groups in play in our scheme, Shor’s quan-
tum algorithm [6] cannot be applied to attack our scheme.

10 Conclusion: advantages and limitations of the scheme

10.1 Advantages

1. A novel mathematical idea used for signature verification.

2. Efficiency of the signature verification (about 0.3 sec on average).

10.2 Limitations

1. The main limitation is the size of the public key (about 15 Kbytes with
suggested parameters).

The private key (the automorphism ϕ) is not too small either, about 1.5
Kbytes on average. There is a trade-off between the size of ϕ and its security.
The size of ϕ can be, in principle, reduced to just a few hundred monomials, but
then security becomes a concern since some parts of ϕ(xi) may be possible to
recover more or less by inspection of the public pairs (Pi, ϕ(Pi)).

The signature size is about 4 Kb on average, which is decent but not record-
breaking.

2. Another limitation is that using non-deterministic methods, such as a Monte
Carlo type method, may result in errors, more specifically in false negative or
even false positive results of the signature verification, although so far, with sug-
gested parameters, we did not detect any false negative or false positive results.
(“False negative" means rejecting a valid signature.)

BASS: Boolean Automorphisms Signature Scheme 11

References

1. D. Grigoriev, M. Karpinski, An approximation algorithm for the number of ze-
roes of arbitrary polynomials over GF[q] - Proc. 32 IEEE Symp. FOCS, 1991,
pp. 662–669.

2. Julia code for the BASS, https://drive.google.com/file/d/1z3RWV9SRhSAxbBOtTXuw_HEIZhNFyB3a/view
3. L. Makar-Limanov, V. Shpilrain and J.-T. Yu, Equivalence of polynomials under

automorphisms of K[x, y], J. Pure Appl. Algebra 209 (2007), 71–78.
4. T. T. Moh, A public key system with signature and master key functions, Comm.

Algebra 27 (1999), 2207–2222.
5. NIST: Post-Quantum Cryptography: Digital Signature Schemes,

https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf

6. P. Shor, Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer, SIAM J. Comput. 26 (1997), 1484–1509.

7. L. Valiant, Complexity of computing the permanent, Theor. Comput. Sci. 8

(1979), 189–201.

Appendix

Here we give a proof of Proposition 1.

Proposition 1. Let h = h(x1, . . . , xn) be a polynomial from the set G. Suppose
h does not depend on xk. Let α be the map that takes xk to xk + h − 2xk · h
and fixes all other variables. Then:

(a) α defines an automorphism of B(K), the factor algebra of the algebra
Z[x1, . . . , xn] by the ideal generated by all polynomials of the form (x2

i − xi),
i = 1, . . . , n. Denote this automorphism also by α.

(b) The group of automorphisms of B(K) is generated by all automorphisms as
in part (a) and is isomorphic to the group of permutations of the vertices of the
n-dimensional Boolean cube.

(c) For any polynomial P from Z[x1, . . . , xn], the number of positive values of
P on Boolean tuples (x1, . . . , xn) equals that of α(P).

Proof. (a) Let Bn denote the Boolean n-cube, i.e., the n-dimensional cube whose
vertices are Boolean n-tuples. The map α leaves the set of vertices of Bn invari-
ant. Indeed, α fixes all xi except xk, and it is straightforward to see that if xk = 0,
then α(xk) = h(x1, . . . , xn), and if xk = 1, then α(xk) = 1−h(x1, . . . , xn). Since
on any Boolean n-tuple (x1, . . . , xn), one has h(x1, . . . , xn) = 0 or 1 (see Section
3.2), we see that α is a bijection of the set of vertices of Bn onto itself.

Next, observe that for any polynomial h from the set G, one has h2 = h

modulo the ideal generated by all polynomials of the form (x2
i − xi); this easily

follows from the inductive procedure of constructing polynomials h, see Section
3.2. Therefore, α leaves the ideal generated by all (x2

i − xi) invariant since α

takes xi to xi + h − 2xi · h, and then α(x2
i − xi) = (xi + h − 2xi · h)

2 − (xi +
h − 2xi · h) = (x2

i − xi) + (h2 − h) + 2xih − 4x2
ih − 4xih

2 + 4x2
ih

2 + 2xih =
(x2

i − xi) + (h2 − h) + 4h(xi − x2
i) + 4h2(x2

i − xi).

https://drive.google.com/file/d/1z3RWV9SRhSAxbBOtTXuw_HEIZhNFyB3a/view
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf

12 Grigoriev et al.

(b) Consider the automorphism α again. Fix a particular Boolean n-tuple (x1, . . . , xn).
Suppose that h(x1, . . . , xn) = 1. Suppose xk = 0 in this tuple. Then α takes this
tuple to the tuple where all xi, except xk, are the same as before, and xk = 1,
i.e., just one of the coordinates in the tuple was flipped. Therefore, an appro-
priate composition of different α (with different xk) can map any given Boolean
n-tuple to any other Boolean n-tuple.

(c) This follows immediately from the argument in the proof of part (a). More
specifically, since the set of vertices of Bn is invariant under α, there is a bijection
between the sets of values of P and α(P) on Boolean n-tuples.

	BASS: Boolean Automorphisms Signature Scheme

