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Abstract. Strong designated verifier signature schemes rely on sender-
privacy to hide the identity of the creator of a signature to all but the
intended recipient. This property can be invaluable in, for example, the
context of deniability, where the identity of a party should not be de-
ducible from the communication sent during a protocol execution. In this
work, we explore the technical definition of sender-privacy and extend
it from a 2-party setting to an n-party setting. Afterwards, we show in
which cases this extension provides a stronger security and in which cases
it does not.

1 Introduction

Digital signatures have many useful applications in our everyday lives, from mes-
sage authentication to software updates. In many cases, they provide a publicly
verifiable way of proving the authenticity of a message. However, sometimes it is
desired to prove authenticity only to the intended receiver, or designated verifier,
of a message. Designated verifier signature (DVS) schemes were constructed for
this reason, to allow for the signing of a message in such a way that the receiver
would be fully convinced of its authenticity, but to third-party observers, the
validity of the signature could be denied. Strong designated verifier signature
(SDVS) schemes are the refinement of this idea, with the additional restraint
that no-one but the creator and the designated verifier should be able to deduce
from a signature who was the creator. While this concept has been studied ex-
tensively and is interpreted intuitively in the same way by many, the technical
definitions for the property separating DVS schemes from SDVS schemes, known
as sender-privacy, vary. In this work we analyze and generalize the definitions in
current literature and aim to provide a universally applicable way to define this
property, particularly focusing on the n-party setting. Furthermore, we prove
that our general form of sender-privacy can be achieved by combining weaker
forms of sender-privacy with non-transferability or unforgeability.

1.1 Related work

Chaum and van Antwerpen first introduced undeniable signatures in [CV89],
which required interaction between the signer and verifier. In 1996 this require-
ment was removed by Chaum [Cha96] and by Jakobsson et al. [JSI96] separately,
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who introduced designated verifier signatures. These formal definitions were later
refined by Saeednia et al. [SKM03]. Rivest et al. introduced ring signatures in
[RST01], which can be interpreted as DVS when a ring size of 2 is used, although
not SDVS.

An important step was made when Laguillaumie and Vergnaud formalised
sender-privacy, the property separating DVS from SDVS, in [LV04]. The notion
of SDVS was further refined to Identity-Based SDVS by Susilo et al. [SZM04],
where all private keys are issued using a master secret key (i.e. central authority).
For this setting, sender-privacy was later formalized in a game-based manner by
Huang et al. [Hua+06].

2 Preliminaries

We denote with κ ∈ N the security parameter of a scheme and implicitly assume
that any algorithm that is part of a scheme is given input 1κ, i.e. the string of κ
1’s, in addition to its specified inputs. We implicitly assume that all adversaries
are probabilistic polynomial-time Turing machines (PPT), although the results
also hold if all adversaries are probabilistic polynomial-time quantum Turing
machines (QPT). We write [n] for the set {0, . . . , n}. We call a function ε(n)
negligible (denoted ε ≤ negl(n)) if for every polynomial p there exists n0 ∈ N

such that for all n ≥ n0 it holds that ε(n) < 1
p(n) . We reserve ⊥ as an error

symbol.

Definition 2.1. A designated verifier signature scheme (DVS scheme) is a tuple
(Setup,KeyGen, Sign,Verify, Simulate) of PPT algorithms such that:

– Setup: Produces the public parameters of a scheme, params. It is implicitly
assumed that these parameters are passed to the following algorithms.

– KeyGen: Produces a keypair (pk, sk).
– SignS→V (m) := Sign(skS , pkS , pkV ,m): Upon input of a sender’s keypair, a

verifier’s public key, and a message m, produces a signature σ if all keys are
valid and ⊥ otherwise.

– VerifyS→V (m,σ) := Verify(skV , pkV , pkS ,m, σ): Upon input of a verifier’s
keypair, a sender’s public key, a message m, and a signature σ, outputs the
validity of σ (a boolean value) if all keys are valid and ⊥ otherwise.

– SimulateS→V (m) := Simulate(skV , pkV , pkS ,m): Upon input of a verifier’s
keypair, a sender’s public key, and a message m, produces a simulated sig-
nature σ′.

2.1 Current definitions

The original definitions for strong verifier designation are a combination of what
we currently distinguish as non-transferability and sender privacy. The following
definitions are the initial attempts at defining strong verifier designation, and
in their respective papers, they are accompanied by definitions for (non-strong)
verifier designation, which are very much in line with the intuition behind non-
transferability.
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Definition 2.2 ([JSI96]). Let (PA,PB) be a protocol for Alice to prove the
truth of the statement Ω to Bob. We say that Bob is a JSI strong designated veri-
fier if, for any protocol (PA,PB,PC ,PD) involving Alice, Bob, Cindy, and Dave,
by which Dave proves the truth of some statement θ to Cindy, there is another
protocol (PC ,P ′D) such that Dave can perform the calculations of P ′D, and Cindy
cannot distinguish transcripts of (PA,PB,PC ,PD) from those of (PC ,P ′D).

In the above definition, the intuition is that Alice proves a statement to
Bob, e.g. the authenticity of a given message. Dave observes this interaction
and tries to prove this observation to Cindy. However, strong designation in this
sense prevents him from doing so, as any proof he could present to Cindy is
indistinguishable (to Cindy) from a simulated proof.

Definition 2.3 ([SKM03]). Let P(A,B) be a protocol for Alice to prove the
truth of the statement Ω to Bob. We say that P(A,B) is a SKM strong desig-
nated verifier proof if anyone can produce identically distributed transcripts that
are indistinguishable from those of P(A,B) for everybody, except Bob.

In later work, we see the definition for strong verifier designation split. Non-
transferability captures the notion that the verifier can produce signatures from
anyone designated to himself, thus ensuring that no signature provides proof
of signer-verifier interaction for third parties. Sender privacy adds to this that,
from a signature, one cannot deduce the sender, thus allowing no third-party
observer to use a signature to plausibly deduce that interaction between two
parties happened.

Definition 2.4. A DVS scheme Π = (KeyGen, Sign,Verify, Simulate) is compu-
tationally non-transferable if for any adversary A,

AdvNT

Π,A(κ) = Pr
b∈{0,1}

[

GNT

Π,A(κ, b) = b
]

−
1

2
≤ negl(κ),

where the game GNT
Π,A is defined as follows:

Game 1: GNT
Π,A(κ, b)

1 params← Setup

2 (pkS, skS)← KeyGen

3 (pkV , skV )← KeyGen

4 (m∗, state)← A(1, params, pkS, skS , pkV , skV )
5 if b = 0 then

6 σ∗ = Sign(skS , pkS , pkV ,m∗)

7 else

8 σ∗ = Simulate(skV , pkV , pkS ,m
∗)

9 b′ ← A(2, state, σ∗)
10 Output b′
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Definition 2.5. A DVS Π = (KeyGen, Sign,Verify, Simulate) is statistically non-
transferable if for all S, V , and m, SignS→V (m) and SimulateS→V (m) are sta-
tistically indistinguishable distributions.

For sender-privacy, many slightly different definitions are presented in lit-
erature. Many follow the form of Game 2, but with different oracles presented
to the adversary. Note that this game is a generalized definition designed to be
instantiated with a set of oracles O to form the specific definitions found in liter-
ature. Besides the oracles, the game takes as parameters the security parameter
κ, the number of parties n, and the challenge party index c. For each i ∈ [n],
party i is denoted Pi. Pn is designated as the verifier for the challenge. In much
of the literature this game is played with 3 parties: S0, S1, and V , who would
here correspond with P0, P1, and P2 respectively in the n = 2 setting.

Game 2: GSendPriv
Π,A,O (κ, n, c), the generalized game for sender-privacy.

1 params← Setup

2 (pkP0
, skP0)← KeyGen; . . . ; (pkPn

, skPn)← KeyGen

3 (m∗, state)← AO
(1)
sign

,O
(1)
veri

,O
(1)
sim (1, params, pkP0

, . . . , pkPn
)

4 σ∗ = SignPc→Pn(m
∗)

5 c′ ← AO
(2)
sign

,O
(2)
veri

,O
(2)
sim (2, state, σ∗)

6 Output c′

Definition 2.6 ([Hua+06]). A DVS Π = (KeyGen, Sign,Verify, Simulate) is a
Hua-strong DVS if it is statistically non-transferable and for any PPT adversary
A,

AdvSendPrivΠ,A (κ) = Pr
c←{0,1}

[

GSendPriv

Π,A (κ, 2, c) = c
]

−
1

2
≤ negl(κ),

where GSendPriv
Π,A is played with the following oracles:

– O
(1)
sign: Upon input (mi, di) returns SignPdi

→P2(mi) if di ∈ {0, 1} and ⊥
otherwise.

– O
(2)
sign: Upon input (mi, di) returns SignPdi

→P2(mi) if di ∈ {0, 1} and mi 6=
m∗,and ⊥ otherwise.

– O
(1)
veri: Upon input (σi,mi, di) returns VerifyPdi

→P2(mi) if di ∈ {0, 1} and ⊥
otherwise.

– O
(2)
veri: Upon input (σi,mi, di) returns VerifyPdi

→P2(mi) if di ∈ {0, 1}, σi 6=
σ∗, and mi 6= m∗,and ⊥ otherwise.

– O
(1)
sim = O

(2)
sim = ∅

In [Hua+06], Huang et al. define signer-privacy for identity-based-SDVS, a
similar type of DVS where all keypairs are issued by a central authority. Here,
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they allow signing queries from any party to any party, and the adversary is
allowed to choose the two signer and the verifier parties. We explore this option
for SDVS in Definition 4.2.

3 Bringing sender-privacy to the multi-party setting

Sender privacy is meant to provide security in the setting where an eavesdropping
adversary is trying to detect the identity of the sender of a signature. In the pre-
viously presented definitions, this is modeled by a coin flip between two senders,
with a fixed verifier. This way of defining sender privacy is similar to key-privacy
in public-key cryptography [Bel+01]. The key difference here is that public-key
ciphertexts are only related to one keypair, the receiver’s. However, designated
verifier signatures are bound to two parties, the signer and the designated veri-
fier. This creates the problem that the naive way of defining sender-privacy does
not cover any attacks that require multiple parties. In key-privacy, any adver-
sary requiring n parties for their attack can perform this attack in the two-party
setting by simulating the other n − 2 parties themself. However, in the case of
SDVS schemes, this is not necessarily possible. The adversary could be unable to
create signatures signed by one of the two challenge parties with their simulated
parties as the verifier, as is depicted in Figure 1. In particular if one does not
have statistical non-transferability, this might pose a problem. For this reason,
we explicitly shape our definition for the multi-party setting. We explore settings
where this is a non-issue in Section 5.

P4 P5

P2 P3

P0 P1

C

Osign

P4 P5

P2 P3

P0 P1

A

C

Fig. 1. Left: a 6-party setting where the adversary requests a signature using an oracle,
Right: a 4-party setting where the adversary simulates another 2 parties but is now
unable to obtain the same signature as on the left.

3.1 Oracles

Many different interpretations exist in the literature of what oracles the adver-
sary should be given access to. The key choices here are whether (1) a simulation
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oracle should be provided, (2) a verification oracle should be provided, and (3)
whether the adversary should still have access to the oracles after the challenge
has been issued. Whereas the precise attacker model might depend on the con-
text and our framework allows us to capture this, we here choose to focus on the
strongest level of security, by providing the adversary with as much as possible
without trivially breaking the challenge.

Definition 3.1. For any n, let the standard n-sender SendPriv-oracles denote:

– O
(1)
sign = O

(2)
sign: Upon input (mi, s, v) returns σi := SignPs→Pv

(mi) if s, v ∈
[n] and ⊥ otherwise.

– O
(1)
sim = O

(2)
sim: Upon input (mi, s, v) returns σi := SimulatePs→Pv

(mi) if
s, v ∈ [n] and ⊥ otherwise.

– O
(1)
veri: Upon input (mi, σi, s, v) returns VerifyPs→Pv

(mi, σi) if s, v ∈ [n] and
⊥ otherwise.

– O
(2)
veri: Upon input (mi, σi, s, v) returns VerifyPs→Pv

(mi, σi) if s, v ∈ [n] and
σi 6= σ∗, and ⊥ otherwise.

Note that the oracles make use of an implicit ordering of the parties. This
makes no difference in any real-world application, but for constructing proofs we
also define a set of oracles that allows this ordering to be hidden by a permuta-
tion.

Definition 3.2. For any set of oracles for GSendPriv and any permutation π de-
fine the permuted oracles as follows, where b ∈ {0, 1}:

– O
(π,b)
sign : On input (mi, s, v) output O

(b)
sign(mi, π(s), π(v))

– O
(π,b)
sim : On input (mi, s, v) output O

(b)
sim(mi, π(s), π(v))

– O
(π,b)
veri : On input (mi, σi, s, v) output O

(b)
veri(mi, σi, π(s), π(v))

3.2 Definition

Taking all these things into consideration, we can now craft a definition of sender
privacy. This definition is more in line with current research in ID-based-SDVS
research such as [Hua+11].

Definition 3.3. A DVS scheme Π is n-party sender private with respect to O
if for any adversary A,

AdvSendPrivΠ,A,O (κ, n) = Pr
c←{0,1}

[

GSendPriv

Π,A (κ, n, c) = c
]

−
1

2
≤ negl(κ).

A DVS scheme is n-party sender private if it is n-party sender private with
respect to the standard n-sender SendPriv-oracles.
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4 Alternative definitions

In this section, we look at possible alternative definitions that one could consider
equally valid generalizations of the 2-party setting to the n-party setting. For
example, in the 2-party setting, we pick the challenge uniformly at random
between the two possible senders, thus one could consider picking uniformly
at random from n senders in the n-party setting.

Definition 4.1. A DVS scheme is n-party random-challenge sender private
with respect to O if for any adversary A,

AdvnrSendPrivΠ,A,O (κ, n) = Pr
c←[n−1]

[

GSendPriv

Π,A,O (κ, n, c) = c
]

−
1

n
≤ negl(κ).

A DVS scheme is n-party random-challenge sender private if it is n-party random-
challenge sender private with respect to the standard n-sender SendPriv-oracles.

Furthermore, one could strengthen the definition even more by allowing the
adversary to choose which two senders the challenge is chosen from and which
party is the verifier.

Game 3: GChosenSendPriv
Π,A,O (κ, n, c)

1 params← Setup

2 (pkP0
, skP0)← KeyGen; . . . ; (pkPn

, skPn)← KeyGen

3 (m∗, s0, s1, r, state)← A
O

(1)
sign

,O
(1)
veri

,O
(1)
sim(1, params, pkP0

, . . . , pkPn
)

4 σ∗ = SignPsc→Pr (m
∗)

5 c′ ← AO
(2)
sign

,O
(2)
veri

,O
(2)
sim (2, state, σ∗)

6 Output c′

Definition 4.2. A DVS scheme is n-party adversarial-challenge sender private
with respect to O if for any adversary A,

AdvChosenSendPrivΠ,A,O (κ, n) = Pr
c←{0,1}

[

GChosenSendPriv

Π,A (κ, n, c) = c
]

−
1

2
≤ negl(κ).

A DVS scheme is n-party adversarial-challenge sender private if it is n-party
adversarial-challenge sender private with respect to the standard n-sender SendPriv-
oracles.

4.1 Relations

As one might expect, the above-defined alternative definitions relate strongly to
the main definition, Definition 3.3. In fact, in this section, we show that they are
equivalent up to polynomial differences in the advantages.
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For the universally random challenge, this can be done by simply only con-
sidering the cases where the challenge is P0 or P1, which will be the case 2 out
of n times, giving us a loss in the advantage of a factor 2

n
.

Theorem 4.3. For any adversary A, DVS scheme Π, and set of oracles O,

2

n
· AdvSendPrivΠ,A,O (κ, n) ≤ AdvnrSendPrivΠ,A,O (κ, n)

Proof.

AdvnrSendPrivΠ,A (κ, n)

= Pr
c←[n−1]

[

GSendPriv

Π,A (κ, n, c) = c
]

−
1

n

=
2

n
Pr

c←[1]

[

GSendPriv

Π,A (κ, n, c) = c
]

+
n− 2

n
Pr

c←[2,n−1]

[

GSendPriv

Π,A (κ, n, c) = c
]

−
1

n

=
2

n

(

Pr
c←[1]

[

GSendPriv

Π,A (κ, n, c) = c
]

−
1

2

)

+
n− 2

n
Pr

c←[2,n−1]

[

GSendPriv

Π,A (κ, n, c) = c
]

=
2

n
· AdvSendPrivΠ,A (κ) +

n− 2

n
Pr

c←{2,...,n−1}

[

GSendPriv

Π,A (κ, n, c) = c
]

≥
2

n
· AdvSendPrivΠ,A,O (κ, n),

where [2, n− 1] = {2, . . . , n− 1}.

Theorem 4.4. For any adversary A, set of oracles O and DVS scheme Π, there
exists an adversary B such that

1

2
AdvnrSendPrivΠ,A,O (κ, n) ≤ AdvSendPrivΠ,B,O (κ, n).

Proof. Here, we omit the subscripts Π and O for Adv and G for simplicity. Let B
be defined as in Games 4 and 5. The permutation is used here to hide the indexa-

Game 4: BO
(1)
sign

,O
(1)
veri

,O
(1)
sim(1, params, pkP0

, . . . , pkPn
)

1 Pick a random permutation π : [n] 7→ [n] such that π(n) = n

2 (m∗, state)← AO
(π,1)
sign

,O
(π,1)
veri

,O
(π,1)
sim (1, params, pkPπ(0)

, . . . , pkPπ(n)
)

3 Output (m∗, (π, state))

tion of the parties from the adversary. Note that applying a permutation π in this
fashion is equivalent to generating the keypairs in the order π−1(0) . . . π−1(n)
and since these are i.i.d. samples the order of their generation does not affect the
winning probability of A. However, it guarantees that the winning probability

8



Game 5: BO
(2)
sign

,O
(2)
veri

,O
(2)
sim(2, state′, σ∗)

1 Parse state′ as (π, state)

2 c′ ← AO
(π,2)
sign

,O
(π,2)
veri

,O
(π,2)
sim (2, state, σ∗)

3 if π(c′) ∈ {0, 1} then
4 Output π(c′)

5 else

6 Output 0

of A is the same for every c. Note that here we use Prπ to indicate the uniform
probability over all π : [n] 7→ [n] such that π(n) = n.

AdvSendPrivB (κ, n)

= Pr
c←[1]

[

GSendPriv

B (κ, n, c) = c
]

−
1

2

= Pr
c←[1],π

[

GSendPriv

A (κ, n, π−1(c)) = π−1(c)
]

+
1

2
Pr
π

[

GSendPriv

A (κ, n, π−1(0)) 6∈ {π−1(0), π−1(1)}
]

−
1

2

= Pr
c←[n−1]

[

GSendPriv

A (κ, n, c) = c
]

−
1

2
Pr
π

[

GSendPriv

A (κ, n, π−1(0)) ∈ {π−1(0), π−1(1)}
]

=
1

2
Pr

c←[n−1]

[

GSendPriv

A (κ, n, c) = c
]

−
1

2
Pr
π

[

GSendPriv

A (κ, n, π−1(0)) = π−1(1)
]

=
1

2

(

Pr
c←[n−1]

[

GSendPriv

A (κ, n, c) = c
]

−
1

n− 1
Pr

c←[n−1]

[

GSendPriv

A (κ, n, c) 6= c
]

)

=
1

2

(

n

n− 1
Pr

c←[n−1]

[

GSendPriv

A (κ, n, c) = c
]

−
1

n− 1

)

=
n

2(n− 1)
AdvnrSendPrivA (κ, n) ≥

1

2
AdvnrSendPrivA (κ, n)

Combining Theorem 4.3 and Theorem 4.4, we see that the advantages for
fixed-challenge and random-challenge only differ by at most a linear factor. Thus
these definitions are equivalent when considering negligible advantages.

Corollary 4.5. For any n ∈ N, an SDVS scheme is n-party random-challenge
sender private if and only if it is n-party sender private.

For adversarially-chosen challenges, we could try to simply consider only the
cases where the adversary chooses P0 and P1 as the challenge senders and Pn as
the challenge verifier. However, an adversary could be crafted to never choose this
exact combination of parties. Thus, we hide the indexation of the parties under
a random permutation. This is done only for the proof and has no impact on the
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actual definition, as all parties’ keypairs are i.i.d. samples. Since the adversary
does not know this permutation, the chance of them picking these parties is in
the order of n−3 and thus a loss of this order is incurred in the advantage.

Theorem 4.6. For any adversary A and set of oracles O, there exists an ad-
versary B such that

2

n3 − n
· AdvChosenSendPrivΠ,A,O (κ, n) ≤ AdvSendPrivΠ,B,O (κ, n)

Proof. Fix A. Let B be defined as:

Game 6: BO
(1)
sign

,O
(1)
veri

,O
(1)
sim(1, params, pkP0

, . . . , pkPn
)

1 Pick a random permutation π : [n] 7→ [n]

2 (m∗, s0, s1, r, state)← A
O

(π,1)
sign

,O
(π,1)
veri

,O
(π,1)
sim (1, params, pkPπ(0)

, . . . , pkPπ(n)
)

3 if π(s0) = 0 ∧ π(s1) = 1 ∧ π(r) = n then

4 Output (m∗, (0, state))

5 else if π(s0) = 1 ∧ π(s1) = 0 ∧ π(r) = n then

6 Output (m∗, (1, state))

7 else

8 Output (m∗, (2, state))

Game 7: BO
(2)
sign,O

(2)
veri,O

(2)
sim(2, state′, σ∗)

1 Parse state′ as (b, state)

2 c′ ← AO
(2)
sign

,O
(2)
veri

,O
(2)
sim (2, state, σ∗)

3 if b = 0 then

4 Output c′

5 else if b = 1 then

6 Output 1− c′

7 else

8 c′′ ← {0, 1}
9 Output c′′

The permutation is used here to hide the indexation of the parties from the
adversary. Note that applying a permutation π in this fashion is equivalent to
generating the keypairs in the order π−1(0) . . . π−1(n) and since these are i.i.d.
samples the order of their generation does not affect the winning probability of
A. When playing game GSendPriv

Π,B , we can now distinguish two cases:
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1. {π(s0), π(s1)} = {0, 1} and π(r) = n. Since π is random and unknown to

A, this happens with probability 2(n−2)!
(n+1)! . In this case, A has chosen P0 and

P1 as the possible signers and Pn as the verifier, making GChosenSendPriv
Π,A and

GSendPriv
Π,B equivalent.

2. Otherwise, A has chosen different signers or verifiers, in which case GSendPriv
Π,B

becomes equivalent to a random coin flip, with probability 1
2 of guessing c.

Combining this, we get that

Pr
c←{0,1}

[

GSendPriv

Π,B,O (κ, n, c) = c
]

=

2(n− 2)!

(n+ 1)!
Pr

c←{0,1}

[

GChosenSendPriv

Π,A,O (κ, n, c) = c
]

+

(

1−
2(n− 2)!

(n+ 1)!

)

1

2
.

Thus,

AdvSendPrivΠ,B,O (κ, n) =
2(n− 2)!

(n+ 1)!
· AdvChosenSendPrivΠ,A,O (κ, n).

Corollary 4.7. For any n ∈ N, an SDVS scheme is n-party adversarial-challenge
sender private if and only if it is n-party sender private.

Proof. Theorem 4.6 shows that if a scheme is sender private then it is also
adversarial-challenge sender private since the advantage differs by a factorO(n3).
The other direction is trivial, as any adversary for sender-privacy can trivially be
transformed into an adversary for adversarial-challenge sender privacy, always
outputting s0 = 0, s1 = 1, r = n, which gives both adversaries the exact same
winning probability.

5 Alternative oracles

In this section we show that one can use other properties of SDVS schemes, e.g.
non-transferability and unforgeability, to provide equally strong sender-privacy
while giving the adversary weaker oracles. This allows us to more easily prove
that existing schemes satisfy our definition. Note that in this section we only
consider the cases where the security advantages are negligible. First, we will
focus on the verification oracle, showing that they can be removed without im-
pacting the quality of the security when the scheme is unforgeable. Then, we
show that the number of parties can be limited to 3 (n = 2) when a scheme is
both unforgeable and non-transferable.

Definition 5.1. A DVS scheme Π = (KeyGen, Sign,Verify, Simulate) is n-party
strongly-unforgeable with respect to O if for any adversary A,

AdvUFΠ,A,O(κ, n) = Pr
[

GUF

Π,A,O(κ, n) = ⊤
]

≤ negl(κ),

11



Game 8: GUF
Π,A,O(κ, n)

1 params← Setup

2 (pkP0
, skP0)← KeyGen; . . . ; (pkPn

, skPn)← KeyGen

3 (m∗, σ∗, s, v)← AOsign,Overi ,Osim(params, pkP0
, . . . , pkPn

)

4 if VerifyPs→Pv (m
∗, σ∗) = 1 and ∀i : σ∗ 6= σi then

5 Output ⊤.

6 else

7 Output ⊥.

where the game GUF
Π,A,O is defined in Game 8. A DVS scheme is n-party strongly-

unforgeable if it is n-party strongly-unforgeable with respect to O
(1)
sign, O

(1)
sim, O

(1)
veri

from the standard n-sender SendPriv-oracles.

Theorem 5.2. Let n ∈ N and O = {O
(1)
sign,O

(2)
sign,O

(1)
sim,O

(2)
sim,O

(1)
veri,O

(2)
veri}

be the n-sender standard oracles. Any DVS scheme that is n-party sender pri-

vate with respect to O′ = {O
(1)
sign,O

(2)
sign,O

(1)
sim,O

(2)
sim,O

′(1)
veri = ∅,O

′(2)
veri = ∅} and

strongly unforgeable is n-party sender private (with respect to O).

Proof. Fix n ∈ N. Suppose DVS scheme Π is n-party sender private with re-

spect to O′ = {O
(1)
sign,O

(2)
sign,O

(1)
sim,O

(2)
sim,O

′(1)
veri = ∅,O

′(2)
veri = ∅} and strongly

unforgeable, but not n-party sender private with respect to O. Then there ex-
ists an adversary A such that AdvSendPrivΠ,A,O (κ) 6≤ negl(κ). Let A′ be A, except

every query O
(b)
veri(mi, σi, s, v) is replaced with ⊤ if (mi, σi) was the result of a

signing or simulating oracle query and ⊥ otherwise. Since A′ no longer uses the
verification oracles, we have AdvSendPrivΠ,A′,O = AdvSendPrivΠ,A′,O′ ≤ negl(κ), i.e. A′ has the
same advantage with respect to O and O′, as they only differ in the verification
oracles.

Now consider the adversary B, who intends to create a forged signature.
B runs A, recording all signing and simulating queries. Whenever A makes a
verification query for a valid signature that was not the result of a signing or
simulating query, B outputs this signature and halts. Note that the only dif-
ference in the behavior of A and A′ can occur when A makes such a query.
Since the difference between AdvSendPrivΠ,A′,O and AdvSendPrivΠ,A,O is more than negligible,
we have that such a query occurs with more than negligible probability, giving
B a more than negligible probability of constructing a forgery. This contradicts
the fact that Π is strongly unforgeable.

Theorem 5.3. Any DVS scheme Π that is 2-party sender private, strongly un-
forgeable, and computationally non-transferable is n-party sender private for any
n ≥ 2.

Proof. Suppose a DVS scheme Π is 2-party sender private, strongly unforgeable,
and computationally non-transferable. Assume towards a contradiction that Π

12



is not n-party sender private for some fixed n > 2. By Theorem 5.2, this means
Π is also not n-party sender private with respect to

O′ = {O
(1)
sign,O

(2)
sign,O

(1)
sim,O

(2)
sim,O

′(1)
veri = ∅,O

′(2)
veri = ∅}.

Thus, there exists and adversary A such that AdvSendPrivΠ,A,O′ (κ, n) 6≤ negl(κ). Let

A′(1, params, pkP0
, pkP1

, pkP2
) be as follows: First, sample n−2 keypairs (sk′P2

, pk′P2
)

. . . (sk′Pn−1
, pk′Pn−1

) representing parties P ′2 . . . P
′
n−1 and set P ′0 = P0, P

′
1 = P1,

P ′n = P2. Then, run A with the oracles O′′ defined as follows, with b = 1, 2:

– O
′′(b)
veri = ∅.

– O
′′(b)
sign(mi, s, v) :

• If s, v ∈ {0, 1, n}, return O
(b)
sign(mi,max(2, s),max(2, v)).

• If s ∈ {2, . . . , n− 1} and v ∈ [n], return SignP ′

s→P ′

v
(mi).

• If s ∈ {0, 1, n} and v ∈ {2, . . . , n− 1}, return SimulateP ′

s→P ′

v
(mi).

• Else, return ⊥.

– O
′′(b)
sim (mi, s, v) :

• If s, v ∈ {0, 1, n}, return O
(b)
sim(mi,max(2, s),max(2, v)).

• If v ∈ {2, . . . , n− 1} and s ∈ [n], return SimulateP ′

s→P ′

v
(mi).

• If v ∈ {0, 1, n} and s ∈ {2, . . . , n− 1}, return SignP ′

s→P ′

v
(mi).

• Else, return ⊥.

Note that these oracles make use of the fact that one can simulate or sign
a signature without, respectively, the sender’s or verifier’s secret key. Thus we
circumvent the issue mentioned in Section 3. In the oracles, max is used here
to map n to 2, as n and 2 are the challenge verifiers in the n- and 2-party
respectively.

Since Π is 2-party sender private, we have AdvSendPrivΠ,A′,O′′(κ, 2) ≤ negl(κ). When

we replace all oracle calls by their respective functionality, then GSendPriv
Π,A,O′ (κ, n, c)

and GSendPriv
Π,A′,O′′(κ, 2, c) differ, up to relabeling of the parties, only in one way

: some Sign executions in GSendPriv
Π,A,O′ (κ, n, c) have been replaced by Simulate in

GSendPriv
Π,A′,O′′(κ, 2, c) and vice versa. Suppose i ∈ N such replacements have been

made, then for 0 ≤ j ≤ i let Gj(κ, c) be G
SendPriv
Π,A,O′ (κ, n, c) with only the first j such

replacements made, i.e. G0(κ, c) = GSendPriv
Π,A,O′ (κ, n, c) and Gi(κ, c) = GSendPriv

Π,A′,O′′(κ, 2, c).

Since, by construction, Pr [G0(κ, c) = c] − 1
2 6≤ negl(κ) and Pr [Gi(κ, c) = c] −

1
2 ≤ negl(κ), we can fix a lowest k such that Pr [Gk(κ, c) = c] − 1

2 6≤ negl(κ)
and Pr [Gk+1(κ, c) = c] − 1

2 ≤ negl(κ). Gk and Gk+1 differ only in one replace-
ment. Without loss of generality, assume one SignPs→Pv

(m) was replaced by
SimulatePs→Pv

(m)
Now define an adversary B for GNT as follows: B(1, params, pkS , skS , pkV , skV )

picks a c ∈ {0, 1} and runs Gk(c, κ), replacing pks with pkS , sks with skS , pkv
with pkV , and skv with skV . This replacement is only a relabeling. The execution
of Gk is stopped at the one difference with Gk+1, then outputs (m, (state, c)),
where state is the current state of Gk and m the message in the replaced Sign.
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B(2, (state, c), σ) then continues the execution of Gk with σ as the result of the
replaced Sign until Gk outputs c′. B then outputs 0 if c = c′ and 1 otherwise.

Note that in GNT
Π,B(0, κ), i.e. the case where a Sign is used in the non-trans-

ferability game, B plays Gk(c, κ) and in GNT
Π,B(1, κ), B plays Gk+1(c, κ). Thus we

have that

Pr
b

[

GNT

Π,B(b, κ) = b
]

=
1

2
Pr
c
[Gk(c, κ) = c] +

1

2
Pr
c
[Gk+1(c, κ) 6= c] .

This directly implies that

AdvNT

Π,B(κ, n) =
1

2

(

Pr
c
[Gk(c, κ) = c]− Pr

c
[Gk+1(c, κ) = c]

)

6≤ negl(κ).

This contradicts our assumption that Π is computationally non-transferable,
thus Π must be n-party sender private.

6 Conclusion

In this paper, we provided a way of defining sender privacy in the n-party set-
ting that is novel for DVS schemes, a generalization of existing definitions and
in line with definitions for other types of schemes in the multi-party setting, in
particular ID-based SDVS schemes. We explored the effects of choosing the chal-
lenge differently and observed that this induces only polynomial differences in
the advantage the adversary has. Furthermore, we showed how other properties
of a SDVS scheme can be used to boost the sender privacy of a scheme from an
alternative definition to our definition. In particular, we have proven that under
the assumption of strong unforgeability and computational non-transferability
a 2-party sender-private scheme is n-party sender private. The proven relations
are important since the SDVS schemes are often meant to be employed in an
n-party setting and we give sufficient conditions for this to be secure.

We would like to stress that the objective of this paper is to formulate sender
privacy in such a way that it covers all theoretical types of attacks that should
be intuitively covered by this property. Thus, the definition presented is not
necessarily technically different from previous definitions, in fact, it will coincide
in many cases. As such we do not provide separating examples of schemes that
satisfy one definition but not another, as any such case would be extremely
artificial. Instead, the definitions in this work and their equivalence should be
used to simplify proofs where sender privacy property is used, both in classical
and quantum use cases.
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