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Abstract. We present here a reverse engineering tool that can be used
for information retrieval and anti-malware techniques. Our main contri-
bution is the design and implementation of an instrumentation frame-
work aimed at providing insight on the emulation process. Sample emu-
lation is achieved via translation of the binary code to an intermediate
representation followed by compilation and execution. The design makes
this a versatile tool that can be used for multiple task such as infor-
mation retrieval, reverse engineering, debugging, and integration with
anti-malware products.
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1 Introduction

In this paper we present the design and implementation of a new security tool
called Pinky. Although an emulator at its core, Pinky comes with its own instru-
mentation framework, intermediate representation, coupled with a set of transla-
tors and compilers, and platform emulation (filesystem, memory, libraries) thus
allowing samples from multiple operating systems to be analyzed and executed
on any platform or machine. For example, its platform independence allows it
to analyze a Windows 32-bit executable on a Linux distribution running on a
MIPS-64 platform.

The instrumentation framework is designed such that the emulation process
can be stopped at any point in order to provide data on the state it is in. For
example we can peak and change mapped memory, registers, stack, executable
code and data sections, and the filesystem. At the same time, we can also en-
able, set, or disable various information points. The instrumentation framework
has no performance impact on the emulation process. Through instrumentation,
Pinky can put on various hats. It can act as a tracer for system and library
calls. Suspending and resuming emulation allows it to create memory dumps at
various execution points, making it an universal unpacker. With more abstract
instrumentation points, the tool can also become a reverse engineering debugger.
And finally, it can act as anti-malware engine enabling the setup for static and
dynamic signatures through its callback mechanism.

http://arxiv.org/abs/2311.03588v1
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Pinky is designed as an opaque tool providing a clear and simple interface
that allows it to be integrated and controlled by third-party applications in a
non-intrusive way. Thus it can be used inside datacenters (e.g. as an automated
information retrieval tool or scanner), together with other software (e.g. existing
IDS or anti-malware solutions), or as a stand-alone reverse engineering tool inside
a laboratory.
Existing work. We focused our work on recent studies regarding dynamic bi-
nary analysis. Our main inspiration for the intermediate representation and the
compiler-translator coupling has been the work on UQBT [6,25,24] but also oth-
ers like [17,18,10].

We differentiate ourselves from existing tools such as generic emulation tools
such as QEMU [4] or Bochs [14] through performance, customization and in-
strumentation. The goals are different, we do not plan on being a generic vir-
tualisation solution. This is important, especially in the anti-malware scenario,
because speed difference and low-memory footprint sets us apart from generic so-
lutions. More sophisticated tools like Valgrind [18] or rr [20] are more advanced
in some regards, but they do not offer platform customization, a file system,
instrumentation, nor cross platform emulation.

In the examples displayed in this paper we will see that, through instrumen-
tation, Pinky can act as many well known tools. For example, it can give traces
of system calls and native APIs (such as ntdll.dll, kernel32.dll, advapi32.dll and
so on) much like strace and ltrace do in Linux. But while it does that, at the
same time it can provide much more functionality.

2 Emulator Schematics

Following the work on intermediate representation languages we seek to obtain a
fast and performant emulator through our virtual machine (VM) implementation
coupled with just-in-time (JIT) compilation strategies and efficient caching. The
main emulation performance is gained by tiered compilation through threshold-
based mixins of JIT compilation and VM emulation. Every codeblock that gets
processed is also cached and will be reused the next time it’s encountered. Cur-
rently there are two caching strategies to choose from. More aggressive optimiza-
tions can occur when a codeblock is frequently enough. If a platform is missing
JIT support, it will always fallback on the VM.

Instrumentation is done by dynamically enabling and disabling information
retrieval points throughout the emulation process. Data points can adhere to
dictated caller-callee protocols and exchange data structures that influence the
sample control and data flows. The instrumentation points have no performance
impact when they are disabled.

The emulation callback system is designed with the anti-malware engines
in mind. For example a common issue that comes up in the field is handling
polymorphic routines in static unpackers and coping with the different versions
and variations in the wild. This can get to a point where the static routine gets
so complex and has to deal with so many cases that it slowly becomes a dynamic
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analysis tool on its own. In this sceanario, a solution would be to let the static
unpacking process run until the offending polymorphic routine is reached, stop
and handle things over to the emulator which will dynamically unpack it and
then give control back to the static routine.

When used as a reverse-engineering tool, it can act as a debugger by setting
breakpoints, watches, single-stepping at different granularity (e.g codeblocks or
instructions), setting different instrumentation points at runtime, tracing system
calls and library APIs, enabling different logs at various verbosity levels for
discrete periods of time, and many other similar useful features. As a tool in the
laboratory, it can also be used in bulk scans to craft generic or specific reports.
The generated data can include sample geometry, memory dumps, classification
criteria, profiling data and other custom data retrieved through instrumentation.

Reproducible results are made possible through the ability to stop the em-
ulation process in a coherent and platform agnostic fashion. This implies re-
producibility no matter of the processor frequency, memory size or type, disk
input-output throughput or other machine dependent factors.

Pinky is written in C++ with a focus on the C-subset with portability in
mind. The interface is simple and intuitive. It consists of three parts: the emu-
lator interface, the configuration interface and the instrumentation interface. It
is implemented through abstract virtual classes that make it easy to decouple
from the rest of the project. In the following sections we will describe each tool
component and go into more details about its design and implementation.

3 Design and Implementation

3.1 Intermediate Representation

The goal of the intermediate representation (IR) was to to have a small and
reusable instruction set architecture (ISA) that would cater to all existing hard-
ware and software computer models. In order to keep the instruction set small
we designed an orthogonal ISA [19], thus allowing us to separate addressing
modes and opcode functionality [12]. Existing hardware examples are the PDP-
11, VAX, and ARM11 architectures. Orthogonality also allowed us to enforce
fixed size instructions which in turn made it easier for us to enforce aligned
access. Our architecture address resolution is 32-bits, and its instruction size
is identical to its word size. Each of our instructions has the following fixed
form: opcode size dest src imm flags. This is unlike most hardware implemen-
tations [5] which have variable instruction size and permit unaligned access. The
x86 family [11] is particular famous in this regard as it permits constructs like

Before: After:
407F1A E834000000 CALL sample.407F53
...

407F4F 20978CEAF873 AND BYTE PTR DS:[EDI+73F8EA8C],DL 407F53 F8 CLC
407F55 020F ADD CL, BYTE PTR DS:[EDI] 407F54 7302 JNB SHORT sample.407F67

The call instruction at address 1A jumps in the middle of the and instruction at
address 4F which is interpreted as a legitimate but entirely different instruction.
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Note that the entire program flow is affected by this and that the attacker relied
on the fact that a legitimate hidden instruction exists at address 53.

Stability was another key aspect because once we will start having consumers
of our architectures (also called translators), it would become difficult to make
large changes in the initial choice. This is also true for compilers and interpreters
that will use the resulting intermediate representation to target code and execute
it. The ARM architecture is infamous for its frequent ISA changes. A small and
stable ISA meant that we had to ensure that we can reduce CISC architectures
to it. We did and we provide a few examples of difficult instruction subsets
(such as SSE and FPU) that we were successfully able to emulate with our
ISA in the following sections. With that in mind, we are now able to define

Table 1. Instruction set

Control jmp, ret, fsave, frestore
Memory ld, st, mv

Arithmetic add, addc, sub, subc, mul, div
Logical and, or, xor, not, cmp
Shifts rl, rr, sl, sr

Special syscall

our cross intermediate representation (XIR). In Table 1 we present the entire
instruction set. The control instructions handle jumps, function returns, and
flag manipulations, while for memory manipulations we only have load, store
and move instructions. The arithmetic and logic operations consist of the usual
suspects with the note that the some have a c-suffix denoting an extra carry
operation. Shifts and rotation are supported also.

When designing such a tool, if going after full CPU and thus ISA support
one of a few hard choices has to be made: design only for a specific platform
(e.g. IA-32-based only), sprinkle hacks throughout the codebase thus ensuring
multiple layer violations (the translator reaches into the intermediate represen-
tation, or even directly into the compiler), or, in academic spirit, we can just
ignore them and have a toy example working only on an instruction subset. In
this article we propose an alternative approach which is able to deal with all
special architecture specific instruction set extensions. That is why at the end of
Table 1 we introduced a special instruction syscall that maintains modularity
and solves the issue by calling out to the emulator for help. We have imple-
mented and tested its usefulness with multiple extensions such as Intel’s FPU,
MMX, SSE instructions. We consider this to be fully extensible to others and
also consider it future proof. Of course, this instruction is slower.

When picking registers we went with 256 word-sized 32-bit registers with 8-
bit access. Further, we partitioned them into groups: upper range mapped to the
registers of the emulated architecture, lower range reserved for compiler internal
use, plus other special registers for interrupts, flags and initialization.

In terms of stack choices, while most architectures have a word-sized stack
or worse, a multiple granularity stack like x86, we choose no stack at all. This
avoids multiple security issues Even though the ISA has no concept of a stack
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nor does it emulate it in any way, the stack of other models is modeled as direct
memory access operations. To our knowledge, this represents a novel approach.

3.2 Translator

Each instruction set architecture that we want to support has to provide a dis-
assembler and a translator to our intermediate representation. The disassembler
tokenizes the instructions, fetches the implicit or explicit opcode arguments,
and dispatches this information for translation. Our translator interface consists
of only two functions: translate(mmu, addr, ir); syscall(env, mmu, opcode).
The first translates block at address addr using the current memory contents as
reflected by the mmu. and returns the intermediate representation ir. For each
opcode we have a translating function (or a handler) that receives the opcode
arguments and writes out the equivalent functionality in IR opcodes

A typical x86 opcode translation will look like gen opcode(dst, src, aux,

mod) where the first three represent operands that can have various types like
register, memory, immediate value. The last argument, mod, represents the in-
struction modifier that can dictate a switch to a different addressing mode (e.g.
16-bit) or a special request (e.g. repeating the instruction multiple times, locking
etc.). The function call will generate a stream of equivalent XIR instructions.

gen_add(dst, src, aux, mod)

if (dst->type == OP_MEM && src->type == OP_IMM)
reg_t tmp = alloc_reg();

ld(dst->width, tmp, dst->r, dst->imm);
add(dst->width, tmp, 0, src->imm);

st(dst->width, dst->r, tmp, dst->imm);

free_reg(tmp);

In the above we depict the x86 ADD translation where the destination is the
memory address of an integer to which we have to add an immediate value. This
translates to three XIR operations: we load the integer value from memory to a
temporary register (ld), then we perform the addition (add), and store back the
result (st). Notice that we used the destination width to dictate the addressing
mode. This makes the code portable and adaptable to word size changes.

As earlier discussed, syscall provides instruction emulation for particular in-
struction subsets. The registers and memory layout are prepared by the transla-
tor before calling out to the compiler to solve the specifics of the opcode given the
current execution environment. Thus, when encountering a special instruction
the emulator will pause and exit translation, emulate (part of) the instruction on
the real CPU, write the results in translation state registers re-enter and resume
translation. Here is a quick example for the x86 FABS instruction

gen_fabs() emu_fabs()
sys(UD_Ifabs, 0, 0); double fpdata = FPU_ST(0);

if (!isnan(fpdata))}
FPU_ST(0) = fabs(fpdata);
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Once the disassembler, udis86 in this case [23], decodes the instruction it calls
gen fabs from the translator in order to obtain IR. This being a spceial FPU
(or x87) instruction, the event is marked through a syscall with the appropiate
opcode id that the complier will handle. The IR is thus a single syscall instruc-
tion. When the compiler reaches this instruction, it ties it via the identifier to
the special complier function emu fabs that will know how to handle the spe-
cial opcode via x87 specific instructions as can be seen above. Through similar
syscall mechanisms, the tool can also handle kernel (ring-0) sample emulation.

A special mention is required in regards to the handling of flags. The flags
register does not have a special status. It is manipulated as any other register and
it is modeled in an architecture specific way by each translator. Internal changes
and checks can be protected by fsave and frestore guards. Post translation, the
compilers are in charge of keeping the flags sound. In particular, the XIR virtual
machine mimics the flag behavior of x86.

3.3 Compiler

Once everything is translated, the XIR instructions can be executed via inter-
pretation, compilation, or a mixture of the two (also called tiered compilation).
Interpretation is done through the XIR virtual machine (XIRVM). The imple-
mentation is straight forward: for each IR function (see ADD example translated
above) we execute each XIR instruction in the emulator’s own process space.
The sample is isolated in a memory mapped region where all XIRVM operations
perform their tasks. Note that we only need to implement a few VM instructions;
the ones listed in Table 1.

exec_st(mmu, env, pc, dst, src, imm, flags)
b = flags & BITS_MASK;

addr = env->regs[dst] + imm;
val = read_reg(env, b, src);

size = 1 << b;

set_word_le(&val, val);

page = mmu->pte[addr >> PAGE_BITS]

offset = addr & (PAGESZ - 1);
if (page != 0 && offset + size <= PAGESZ)
memcpy((uint8_t *) page + offset, &val, size);

else
mmu->write_memory(addr, &val, size))

In the above example we depict the XIR store (st) virtual machine interpre-
tation. The first instructions fetch the addressing mode in b, the memory ad-
dress from the destination operand, and the value to be written from the source
operand. Based on the size b we store the read value in proper endianess and
alignment according to the target architecture. Here we assume it is word sized,
but it can be any subdivision or multiple of it. Next, the memory address is
translated into a page and offset within the virtual machine memory manage-
ment unit. If the page is already mapped, we perform a simple memory copy
instruction. Otherwise we call out to the MMU to perform the write, which also
implies a page mapping operation beforehand.
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Compilation is performed via just-in-time (JIT) compilation strategies. Sim-
ilar to the interpreter, each IR function is compiled and executed natively on
the host machine. Implementation is also straight forward due to the reduced
number of instructions in the XIR ISA. We tested with several JITs for both
32-bit and 64-bit targets. For x86 we used AsmJIT [13].

gen_mv(dst, src, imm, flags)
b = flags & BITS_MASK;

switch (b)
case B32:

if (src)
as.mov(eax, XIR_REG32(src));

if (imm)
as.lea(eax, dword_ptr(eax, imm));

as.mov(XIR_REG32(dst), eax);

else
as.mov(XIR_REG32(dst), imm);

break;

In the above example we depict the XIR move (mv) JIT compilation. The first
instructions fetch the addressing mode in b and in the displayed operations
we assume it is 32-bit, but it can obviously be any other mode. If the source
operand is defined, we have to emit a register-register move instruction. If only
the immediate value imm is defined, then we move it to the destination register
and we are done. If both the source and the immediate operands are defined,
then we treat it imm as an offset from src.

As with other systems, the interpreter is generally slower than the compiler.
But often we found that when a XIR function is not repeatedly called, the effort
of compiling the code outruns the gain in running native code. Thus in these
cases it might be better to just use the interpreter. To handle this scenario we
implemented tiered compilation [3,9], where the IR is compiled only if its usage
passed a certain threshold. In order to improve the performance of the translate-
compile cycle, we added caching for IR functions such that already codeblocks
that have already been processed can go straight to execution.

3.4 Memory Management Unit

Earlier we saw memory store operations, What happens when any of the follow-
ing needs to be emulated: MOV EAX, [1000]; JMP [EDX]; STOS DWORD PTR ES:[EDI].
The instructions alone can not describe the entire system state, we need to keep
track of memory writes and reads. This involves having an initial memory state
before starting the emulation process. This initial state is operating system (OS)
dependent. The stack state is also partially dictated by the OS in general, and
by its C library implementation and by its format for executables. Thus doing
writes and reads forces us to set and maintain an internally stored memory map.

To address these issues, we designed a transparent platform-agnostic memory
management unit (MMU). Its contents is data without any semantics or logic
tied to it. We choose to represent it as a flat 4096-bytes paging system such that
memory access can be done with O(1) complexity. The memory is allocated con-
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tiguously and grouped into memory regions. These are automatically managed
by the MMU when memory is allocated or freed by the emulator. A caching
mechanism is set in place in order to take a big load off of the translator and
the compiler resulting in big speed-ups. Overall this makes it a performant and
clean memory representation.

read_memory(va, buffer, size); pmap(sz, perf_va, actual_va, flags, min_va, max_va);
write_memory(va, buffer, size); pmap_lookup(count, pref_va, min_va, max_va);

void dump(dmp_dir); pmap_remove(start_va, end_va);

The interface is simple and similar to what system programmers are used to en-
counter when dealing with memory. The first functions map pages into memory;
pmap wires the required pages for a sz sized buffer with optional constraints such
as virtual address (va) interval or forcing a fixed mapping via pref va and flags.
Calls to the read and write memory operations were presented earlier in the
compiler section; the functions require a virtual address, the buffer and its size.
Finally, dump is a very useful function to be called at various emulation points in
order to inspect the memory layout and its contents. It can be used for malware
analysis, information retireval or debugging tasks.

3.5 File System

With an MMU, we still have to address other memory problems during execution.
Consider the following sequence that can appear in our emulated sample

01002E8D PUSH ESI
01002E8E LEA EAX, [EBP-0x8]
01002E91 PUSH EAX

01002E92 CALL DWORD [0x1001074]
7DD85AB0 CALL DWORD 0x7dd85ab5

representing an API call to kernel32.dll!GetSystemTimeAsFileTime; a function
implementation inside a shared system library. These are usually stored as im-
ports inside a special section of the sample’s executable in respect to the exe-
cutable format of the underlying operating system. Almost all executables have
at least a few such imports in order to function properly.

The same issue arises when the sample wants to access the file system for
common input-output (IO) operations such as creating, reading, or writing to
files and directories. In Windows operating systems it might even call out to
manipulate registry entries, or similarly on Linux touch and modify /proc entries.
While we can emulate or get around some of these issues, most calls do not have
a clean solution and thus require the presence of a file system.

We address this issue by creating a virtual file system (VFS) that stores cre-
ated or modified files throughout the emulation process. In addition it provides
a minimal file system environment resembling the expected OS and it also takes
care of special features such as registry and mimics special files such as the ones
found in /proc and /dev. Thus VFS provides an interface for creating and man-
aging file system containers that are platform specific and that are generated
before the emulation process through an archiving like tool.
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init(container); unlink(path);
fd = open(path, mode); stat(path, size, attributes, mode, base);

close(fd); seek(fd, pos);
read(fd, buffer, size); chmod(path, attributes);
write(fd, buffer, size ); rename(from, to);

After loading the container with init, the VFS interface follows the UNIX system
call conventions for handling files.

3.6 Executable Loader

With the system memory and file system present, the final missing puzzle is
the executable loader. Without it the API call problem still exists: a connection
between the sample and the library needs to be made and that link is present
in the sample file. Each executable follows an executable format depending on
the operating system. The executable format dictates how the file is partitioned
into sections. The sections contain information about external dependencies,
including libraries and the functions therein used by the current sample. Thus, a
loader should setup the virtual address space, including the stack, for the sample
and resolve links to external libraries.

For popular platforms such as Linux, BSD or Mac that use the ELF for-
mat [15,22], open-source implementations exist that can be integrated in the
emulator. Windows uses a similar but different format called portable executable
(PE) [21] that is mostly undocumented and depends on the kernel version. Given
the wide impact of malware and other malicious software on the Windows plat-
form, we also designed and implemented a PE loader. Our PE loader mimics as
close as possible the NT kernel, passes all non-conforming but loading samples
we found in the wild, and passes all tests on the Corkami dataset [1].

When providing the actual library implementations, existing solutions either
emulate the real functions and run them outside emulation or use external bi-
naries, perhaps the exact platform library binaries, and run them inside the
emulator. Because of the delicate subject of distributing external binaries, but
also the man-hour impact of rewriting the existing ones, we chose to provide
both options. The emulator will try the native implementation and, if it can not
find the function, it will try to find the binary in the VFS and load it. Of course,
for internal laboratory use it is enough to create a file system container with the
original libraries which is completely possible via the VFS functionality.

Writing your own native implementations does come with advantages such
as the fact that you trust the code (since you wrote it) and can thus gain extra
performance by running it outside emulation. Also, in general, the implementa-
tions are simpler and smaller in size. The down sides are the fact that running
it outside of emulation means that if it crashes it brings the entire process to a
halt and it is also harder to debug.

Using external libraries wrapped in a VFS container has the advantage of
having each library call going through the emulation layer and thus gaining
better control and insight on the whole process. Also, crashing does not affect
the emulator. The down sides are increased complexity due to emulation and
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running through abstractions that might not be needed for the task at hand.
A windows library has to account for many use-cases and inter-connections and
comes with no redistribution rights.

3.7 Instrumentation and Information Retrieval

Dtrace is a modern dynamic tracing tool [16] used in most modern operating
systems [8] for debugging, accounting, logging and other information retrieval
tasks such as reverse engineering [2]. Unlike most tools, dtrace has the advantage
of having zero cost when disabled, a feat accomplished through machine depen-
dent tricks. This allowed for the spread and setup of multiple instrumentation
points (or probes) at no cost. When needed, these information points can be
enabled and executed (or fired up).

In our emulator we followed the dtrace model and implemented a similar
functionality across all modules. The probes have no cost when setup and can be
fired at any time during emulation. Once implemented, this enabled us to quickly
gain useful features such as feedback at any point during emulation, peaking at
mapped memory, registers, stack, executable sections, and the file system. The
instrumentation framework has no performance impact on the emulation.

probe_enable(probe_id); probe_create(probe_id, name, provider, enabler);

probe_disable(probe_id); probe_register(probe_id, consumer, consumer_id);
probe_cb_consumers(probe_id, context);

We defined the probe interface is as follows. A probe has a provider and multiple
consumers. Once a provider creates a probe, a consumer can register using the
probe unique identification number or the probe name. Registered consumers
are walked through when a probe is fired either from the probed function itself
or through a generic consumers callback. If the probe has a broadcast-like func-
tionality, the later is preferred. If a certain list of conditions need to be fulfilled
for a consumer trigger to be pulled, then the former is the way to go.

4 Results

Information retrieval Through the use of the instrumentation probes, we built
a flexible configuration framework that, during emulation, allows us to change
(with immediate effect) all the emulation options, tweak the interpreter, com-
piler and the tiered compilation threshold, and also switch caching algorithms.
Through the same configuration interface we support multiple level logging for
all of the emulator’s modules that can can be turned on, off or switched to a
different verbosity at any time.

010029E3 push ebx ----------------+ ST32 [r165-0x4], r164
010029E3 - MV32 r165, r165-0x4

010029E4 push edi ----------------+ ST32 [r165-0x4], r168
010029E4 - MV32 r165, r165-0x4

010029E5 call dword [0x1001058] --+ MV32 r165, r165-0x4
010029E5 + MV32 r32, 0x10029EB
010029E5 + ST32 [r165], r32
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010029E5 + LD32 r32, [0x01001058]

010029E5 - RET r32

In this example we turned on IR debugging to see how the translator turned x86
machine code (left hand side) into XIR instructions (right hand side).

We also have a probe interface that can stop the emulation process and feed
memory regions through the MMU to static analysis tools for further insight.
Based on these results, the external tools can change the behaviour or control
flow of the analyzed sample before resuming emulation.

Command line debugger We put together multiple probes to create a com-
mand line tool for inspecting, controlling and changing the emulation process.
This tool includes debugger functionality like setting breakpoints, watchpoints
and more sophisticated conditional stopping points all through the use of probes.
This tool can also produce on-demand MMU dumps during emulation for sig-
nature inspection.

> break 0x7DE9FA40

> ping.exe
EMULATING ping.exe

Breakpoint 0 at 0x7DE9FA40
> probe x86_step_mode

> set log:ir 1
> next
DEBUG - debug_code.cpp:301 - ir:

Source -> IR:
7DE9FA90 mov dword [ebp-0x10], 0xffffffff + MV32 r32, 0xFFFFFFFF

7DE9FA90 + ST32 [r166-0x10], r32
7DE9FA90 - RET 0x7DE9FA97

Breakpoint 1 at 0x7DE9FA90

Above is an example inside the debugger. First we set breakpoint at an address
inside the Windows ping executable and then proceed to run the sample. The
debugger stops when the address is reached. Then we set fire the stepping mode
probe that turns every codeblock into a single instruction, enable the logging
level for the IR translation and proceed to the next instruction.

Stopping We provide deterministic stopping that is agnostic to the host hard-
ware. The goal is to be able to stop the emulation process aronud the same
instruction no matter if we run on an Intel Xeon or a small ARM device. To
do that we started an ample analysis where we marked the important nodes in
the dynamic analyzer, added counters in these key positions, ran the emulator
through large corpus of varied data samples and at the end stored the execution
time and the final counter values. The corpus consisted of m samples with n

counters each such that m ≫ n. Thus a given sample has an execution time

t =
(

c1 c2 c3 . . . cn
) (

w1 w2 w3 . . . wn

)T
. Let T ∈ R

m be the vector consisting
of all sample execution times, C ∈ R

m×n the counters matrix and w ∈ R
n the

weights. These measurements lead to a simple least-squares problem [7] T = Cw

whose solution are the associated weights w.
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This model leads to some nice practical properties. We can start with a
small set of counters which leads us to a fair approximation thus gaining a fast
start-up. This starting point can be continuously adjusted and improved through
counter addition and elimination but also through the addition of new sample
information. This can also be seen as a profiling tool.

We name the weight values metrics. The speed of a platform is measured as
metrics per second. We can now build a deterministic threshold by computing
only once an average platform speed, and setting a metric threshold based on
that. If a process was stopped we know exactly where. As a side effect, we also get
an implicit time threshold for free. For example, if we have an average platform
speed of 50 metrics per second, we can set the threshold to 150 metrics which
results in a 3 second maximum emulation time per sample.

Production The tool has been integrated and used successfully in an anti-
malware engine environment (acting as a generic unpacker and memory inspec-
tion tool and doubling the product detection rate), as a bulk scanning tool for
malware and clean sets, and also as a debugger-like reverse-engineering tool
for sample analysis. Three applications that seamlessly integrated the library
with success. This lead to a few nice properties, software wise. The emulator is
reentrent and has built-in exception and fault protection for POSIX and Win-
dows operating systems. Through continuous integration, it is tested weekly on
1, 000, 000+ samples with support for multiple debugging and quality assurance
tools such as OProfile and Electric Fence.

The emulator is highly portable. For example the bulk scanning tool runs
on Linux, OpenBSD and Windows with 32-bit and 64-bit Intel-derivate CPUs.
Also quick nightly scans are conducted on a wide range of system configurations,
both big endian and little endian, with hardware platforms such as Intel 32-bit
and 64-bit, ARMv5 and ARMv7, MIPS-64, PowerPC, Sparc, Sparc64, HP-PA,
and on operating systems such as Windows (versions from Windows XP up to
Windows 10), OS X, Linux, FreeBSD, OpenBSD, NetBSD, Solaris, IllumOS,
Darwin and others. The solution is compiled with all mainline compilers: Visual
Studio, GCC, and CLang.

5 Conclusion and future work

In this paper we presented a reverse engineering tool that can be used for infor-
mation retrieval and anti-malware techniques. Our main contribution has been
the design and implementation of an instrumentation framework created to pro-
vide insight on the emulation process that is achieved via the translation to
an intermediate representation and then compilation of the studied sample. In
the results section we show-cased its application to multiple tasks such as infor-
mation retrieval tool, debugger and its ability to integrate in an anti-malware
production environment. Due to the reduced number of instructions in the XIR
ISA, adding translators and JITs is not a difficult task which makes us consider
adding an LLVM translator in the near future.
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