Skip to main content

M-Sel: A Message Selection Functional Encryption from Simple Tools

  • Conference paper
  • First Online:
Innovative Security Solutions for Information Technology and Communications (SecITC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14534))

  • 140 Accesses

Abstract

In this paper, we put forward a new practical application of Inner-Product Functional Encryption (\(\textsf{IPFE}\)) that we call Message Selection functional encryption (\(\textsf{M}\text {-}\textsf{Sel}\)) which allows users to decrypt selected portions of a ciphertext. In a message selection functional encryption scheme, the plaintext is partitioned into a set of messages \(M = \{m_1,\ldots ,m_t\}\). The encryption of M consists in encrypting each of its elements using distinct encryption keys. A user with a functional decryption key \(sk_{\boldsymbol{x}}\) derived from a selection vector \(\boldsymbol{x}\) can access a subset of M from the encryption thereof and nothing more. Our construction is generic and combines a symmetric encryption scheme and an inner product functional encryption scheme, therefore, its security is tied to theirs. By instantiating our generic construction from a DDH-based IPFE we obtain a message selection FE with constant-size decryption keys suitable for key storage in lightweight devices in the context of Internet of Things (IoT).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: consistency properties, relation to anonymous IBE, and extensions. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 205–222. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_13

    Chapter  Google Scholar 

  2. Abdalla, M., Benhamouda, F., Gay, R.: From single-input to multi-client inner-product functional encryption. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11923, pp. 552–582. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8_19

    Chapter  Google Scholar 

  3. Abdalla, M., Bourse, F., Caro, A.D., Pointcheval, D.: Better security for functional encryption for inner product evaluations. Cryptology ePrint Archive, Paper 2016/011 (2016). https://eprint.iacr.org/2016/011

  4. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_33

    Chapter  Google Scholar 

  5. Abdalla, M., Bourse, F., Marival, H., Pointcheval, D., Soleimanian, A., Waldner, H.: Multi-client inner-product functional encryption in the random-oracle model. In: Galdi, C., Kolesnikov, V. (eds.) SCN 2020. LNCS, vol. 12238, pp. 525–545. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57990-6_26

    Chapter  Google Scholar 

  6. Abdalla, M., Catalano, D., Fiore, D., Gay, R., Ursu, B.: Multi-input functional encryption for inner products: function-hiding realizations and constructions without pairings. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 597–627. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_20

    Chapter  Google Scholar 

  7. Abdalla, M., Catalano, D., Gay, R., Ursu, B.: Inner-product functional encryption with fine-grained access control. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp. 467–497. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_16

    Chapter  Google Scholar 

  8. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_12

    Chapter  Google Scholar 

  9. Bellare, M., Boldyreva, A., Staddon, J.: Randomness re-use in multi-recipient encryption schemeas. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 85–99. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36288-6_7

    Chapter  Google Scholar 

  10. Benhamouda, F., Bourse, F., Lipmaa, H.: CCA-secure inner-product functional encryption from projective hash functions. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 36–66. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7_2

    Chapter  Google Scholar 

  11. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: 2007 IEEE Symposium on Security and Privacy (SP ’07), pp. 321–334 (2007). https://doi.org/10.1109/SP.2007.11

  12. Kim, S., Lewi, K., Mandal, A., Montgomery, H., Roy, A., Wu, D.J.: Function-hiding inner product encryption is practical. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 544–562. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_29

  13. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_30

    Chapter  Google Scholar 

  14. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_13

    Chapter  Google Scholar 

  15. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_16

    Chapter  Google Scholar 

  16. Castagnos, G., Laguillaumie, F., Tucker, I.: Practical fully secure unrestricted inner product functional encryption modulo p. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 733–764. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_25

    Chapter  Google Scholar 

  17. Chotard, J., Dufour Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Decentralized multi-client functional encryption for inner product. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 703–732. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_24

    Chapter  Google Scholar 

  18. Chotard, J., Dufour-Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Multi-client functional encryption with repetition for inner product. Cryptology ePrint Archive, Paper 2018/1021 (2018). https://eprint.iacr.org/2018/1021

  19. Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45325-3_32

    Chapter  Google Scholar 

  20. Datta, P., Dutta, R., Mukhopadhyay, S.: Functional encryption for inner product with full function privacy. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 164–195. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49384-7_7

    Chapter  Google Scholar 

  21. Datta, P., Dutta, R., Mukhopadhyay, S.: Strongly full-hiding inner product encryption. Theoret. Comput. Sci. 667, 16–50 (2017). https://doi.org/10.1016/j.tcs.2016.12.024

    Article  MathSciNet  Google Scholar 

  22. Datta, P., Okamoto, T., Tomida, J.: Full-hiding (unbounded) multi-input inner product functional encryption from the k-Linear Assumption. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 245–277. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_9

    Chapter  Google Scholar 

  23. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.-H., Sahai, A., Shi, E., Zhou, H.-S.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_32

    Chapter  Google Scholar 

  24. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Proceedings of the 13th ACM Conference on Computer and Communications Security, CCS ’06, pp. 89–98. Association for Computing Machinery, New York (2006). https://doi.org/10.1145/1180405.1180418

  25. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, Second Edition. Chapman & Hall/CRC, New York (2014). https://doi.org/10.1201/b17668

  26. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_9

    Chapter  Google Scholar 

  27. Kurosawa, K.: Multi-recipient public-key encryption with shortened ciphertext. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 48–63. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45664-3_4

    Chapter  Google Scholar 

  28. Nguyen, K., Pointcheval, D., Schädlich, R.: Function-hiding dynamic decentralized functional encryption for inner products. Cryptology ePrint Archive, Paper 2022/1532 (2022). https://eprint.iacr.org/2022/1532

  29. Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_11

    Chapter  Google Scholar 

  30. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive, Paper 2010/556 (2010). https://eprint.iacr.org/2010/556

  31. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_27

    Chapter  Google Scholar 

  32. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_5

    Chapter  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for providing helpful comments and suggestions about this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Khoureich Ka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ka, A.K. (2024). M-Sel: A Message Selection Functional Encryption from Simple Tools. In: Manulis, M., Maimuţ, D., Teşeleanu, G. (eds) Innovative Security Solutions for Information Technology and Communications. SecITC 2023. Lecture Notes in Computer Science, vol 14534. Springer, Cham. https://doi.org/10.1007/978-3-031-52947-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52947-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52946-7

  • Online ISBN: 978-3-031-52947-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics