Skip to main content

An Extension of a Dynamic Heuristic Solution for Solving a Multi-Objective Optimization Problem in the Defense Industry

  • Conference paper
  • First Online:
Optimization, Learning Algorithms and Applications (OL2A 2023)

Abstract

Project scheduling in a real-life scenario often involves multiple-criteria decision-making in which no single solution exists. To solve such a problem, a multi-objective optimization method has been applied to define the satisfying trade-off between different criteria. In this paper, we focus on a specific use case in the defense industry in which the overall mission is to generate a maintenance plan for the transfer operations of power grid consumers to the new service area. The project objectives include restricting the outage duration during transfer operations, grouping operations concerning the proximity between them, moderating the allocation of supporting resource, and regulating human resources intervention outside business hours. To solve this problem, we propose a combination of heuristic approaches starting by defining a sequence of activities based on their complexities to be scheduled. Concerning the obtained order, a serial-schedule generation scheme (S-SGS) is then implemented by iterating through each activity to define the best time period to proceed the operation in accordance with project’s multiple objectives. Finally, the output is transferred to our existing parallel scheme-based solver, Optimizio, to finally justify the project planning. The proposed S-SGS solution provides a feasible schedule of 110 transfer operations in 2 s with solution evaluation analysis and information of a Pareto frontier in approximately 15 min. The set of Pareto optimal solutions allows the expert to explore potential trade-offs between criteria. Together with a fast execution time of the algorithms that benefits a multi-scenario simulation, our tool demonstrates a potential capacity to get the optimum outcome of the multi-objective optimization project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coelho, J., Vanhoucke, M.: Going to the core of hard resource-constrained project scheduling instances. Comput. Oper. Res. 121, 104976 (2020)

    Article  MathSciNet  Google Scholar 

  2. Tapia, M.G.C., Coello, C.A.C.: Applications of multi-objective evolutionary algorithms in economics and finance: a survey. In: 2007 IEEE Congress on Evolutionary Computation, pp. 532–539 (2007)

    Google Scholar 

  3. Gunasekara, R.C., Mehrotra, K.G., Mohan, C.K.: Multi-objective optimization to identify key players in social networks. In: 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2016, pp. 443–450 (2014)

    Google Scholar 

  4. Sessarego, M., Dixon, K.R., Rival, D.E., Wood, D.H.: A hybrid multi-objective evolutionary algorithm for wind-turbine blade optimization. Eng. Optim. 47, 1043–1062 (2015)

    Article  MathSciNet  Google Scholar 

  5. Ramirez-Rosado, I.J., Bernal-Agustin, J.: Reliability and costs optimization for distribution networks expansion using an evolutionary algorithm. IEEE Power Eng. Rev. 21, 70 (2001)

    Article  Google Scholar 

  6. Carrano, E.G., Soares, L.A.E., Takahashi, R.H.C., Saldanha, R.R., Neto, O.M.: Electric distribution network multiobjective design using a problem-specific genetic algorithm. IEEE Trans. Power Deliv. 21, 995–1005 (2006)

    Article  Google Scholar 

  7. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 26, 369–395 (2004)

    Article  MathSciNet  Google Scholar 

  8. Rai, A., et al.: A dynamic heuristic optimization for condition-based maintenance planning. Preprint (2020)

    Google Scholar 

  9. Rai, A., et al.: A modular solution for large-scale critical industrial scheduling problems with coupling of other optimization problems. Int. J. Mech. Ind. Eng. 16 (2022). https://publications.waset.org/abstracts/search?q=Khwansiri%20Ninpan

  10. Das, I., Dennis, J.E.: A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems. Struct. Optim. 14, 63–69 (1997)

    Article  Google Scholar 

  11. Kim, I.Y., de Weck, O.L.: Adaptive weighted-sum method for bi-objective optimization: pareto front generation. Struct. Multidiscip. Optim. 29, 149–158 (2005)

    Article  Google Scholar 

  12. Kolisch, R.: Serial and parallel resource-constrained project scheduling methods revisited: theory and computation. Eur. J. Oper. Res. 90, 320–333 (1996)

    Article  Google Scholar 

  13. Baur, N.-F., Rieck, J.: A serial schedule generation scheme for project scheduling in disaster management

    Google Scholar 

  14. Artigues, C., Lopez, P., Ayache, P.-D.: Schedule generation schemes for the job-shop problem with sequence-dependent setup times: dominance properties and computational analysis. Ann. Oper. Res. 138, 21–52 (2005)

    Article  MathSciNet  Google Scholar 

  15. Kim, J.-L., Ellis, R.D.: Comparing schedule generation schemes in resource-constrained project scheduling using elitist genetic algorithm. J. Constr. Eng. Manag. 136, 160–169 (2010)

    Article  Google Scholar 

  16. Chiandussi, G., Codegone, M., Ferrero, S., Varesio, F.E.: Comparison of multi-objective optimization methodologies for engineering applications. Comput. Math. Appl. 63, 912–942 (2012)

    Article  MathSciNet  Google Scholar 

  17. Caramia, M., Dell’Olmo, P.: Multi-objective Management in Freight Logistics. Springer, London (2008). https://doi.org/10.1007/978-1-84800-382-8

    Book  Google Scholar 

  18. Marler, R.T., Arora, J.S.: The weighted sum method for multi-objective optimization: new insights. Struct. Multidiscip. Optim. 41, 853–862 (2010)

    Article  MathSciNet  Google Scholar 

  19. Santos, W.G.: Discrete multiobjective optimization applied to the spacecraft actuators command problem and tested in a hardware-in-the-loop rendezvous simulator (2015)

    Google Scholar 

  20. Nagar, D., Ramu, P., Deb, K.: Visualization and analysis of Pareto-optimal fronts using interpretable self-organizing map (iSOM). Swarm Evol. Comput. 76, 101202 (2023)

    Article  Google Scholar 

  21. Null, S.E., Olivares, M.A., Cordera, F., Lund, J.R.: Pareto optimality and compromise for environmental water management. Water Resour. Res. 57, e2020WR028296 (2021)

    Article  Google Scholar 

  22. Smith, S., Southerby, M., Setiniyaz, S., Apsimon, R., Burt, G.: Multiobjective optimization and Pareto front visualization techniques applied to normal conducting rf accelerating structures. Phys. Rev. Accel. Beams 25, 062002 (2022)

    Article  Google Scholar 

  23. Peng, G., Fang, Y.-W., Peng, W.-S., Chai, D., Xu, Y.: Multi-objective particle optimization algorithm based on sharing-learning and dynamic crowding distance. Optik 127, 5013–5020 (2016)

    Article  Google Scholar 

  24. Caramia, M., Dell’Olmo, P.: Multi-objective Optimization. In: Multi-objective Management in Freight Logistics, pp. 21–51. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50812-8_2

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khwansiri Ninpan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ninpan, K. et al. (2024). An Extension of a Dynamic Heuristic Solution for Solving a Multi-Objective Optimization Problem in the Defense Industry. In: Pereira, A.I., Mendes, A., Fernandes, F.P., Pacheco, M.F., Coelho, J.P., Lima, J. (eds) Optimization, Learning Algorithms and Applications. OL2A 2023. Communications in Computer and Information Science, vol 1981. Springer, Cham. https://doi.org/10.1007/978-3-031-53025-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53025-8_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53024-1

  • Online ISBN: 978-3-031-53025-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics