Skip to main content

Deep Learning-Based Classification and Quantification of Emulsion Droplets: A YOLOv7 Approach

  • Conference paper
  • First Online:
Optimization, Learning Algorithms and Applications (OL2A 2023)

Abstract

This study focuses on the analysis of emulsion pictures to understand important parameters. While droplet size is a key parameter in emulsion science, manual procedures have been the traditional approach for its determination. Here we introduced the application of YOLOv7, a recently launched deep-learning model, for classifying emulsion droplets. A comparison was made between the two methods for calculating droplet size distribution. One of the methods, combined with YOLOv7, achieved 97.26% accuracy. These results highlight the potential of sophisticated image-processing techniques, particularly deep learning, in chemistry-related topics. The study anticipates further exploration of deep learning tools in other chemistry-related fields, emphasizing their potential for achieving satisfactory performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/AlexeyAB/darknet accessed in May 20, 2023.

References

  1. Berton-Carabin, C.C., Schroën, K.: Pickering emulsions for food applications: background, trends, and challenges. Ann. Rev. Food Sci. Technol. 6, 263–297 (2015). https://doi.org/10.1146/annurev-food-081114-110822

    Article  Google Scholar 

  2. Cai, Y., et al.: Yolov4-5d: an effective and efficient object detector for autonomous driving. IEEE Trans. Instrument. Meas. 70 (2021). https://doi.org/10.1109/TIM.2021.3065438

  3. Chevalier, Y., Bolzinger, M.A.: Emulsions stabilized with solid nanoparticles: pickering emulsions. Colloids Surf. A 439, 23–34 (2013). https://doi.org/10.1016/j.colsurfa.2013.02.054

    Article  Google Scholar 

  4. de Tuesta, J.L.D., et al.: Polyolefin-derived carbon nanotubes as magnetic catalysts for wet peroxide oxidation of paracetamol in aqueous solutions. Catal. Today 419, 114162 (2023). https://doi.org/10.1016/j.cattod.2023.114162

    Article  Google Scholar 

  5. Farzi, G.A., Nejad, A.P.: An image-based technique for measuring droplet size distribution: the use of CNN algorithm. J. Dispersion Sci. Technol. 37(10), 1444–1452 (2016). https://doi.org/10.1080/01932691.2015.1090321

    Article  Google Scholar 

  6. Huang, Z., Ni, Y., Yu, Q., Li, J., Fan, L., Eskin, N.M.: Deep learning in food science: an insight in evaluating pickering emulsion properties by droplets classification and quantification via object detection algorithm. Adv. Coll. Interface. Sci. 304, 102663 (2022). https://doi.org/10.1016/j.cis.2022.102663

    Article  Google Scholar 

  7. Itseez: Open source computer vision library (2015). https://github.com/itseez/opencv

  8. Jin, Y., et al.: Uncertainty analysis on droplet size measurement in dispersed flow film boiling regime during reflood using image processing technique. Nucl. Eng. Des. 326, 202–219 (2018). https://doi.org/10.1016/j.nucengdes.2017.11.013

    Article  Google Scholar 

  9. Ma, T., Tian, W., Xie, Y.: Multi-level knowledge distillation for low-resolution object detection and facial expression recognition. Knowl.-Based Syst. 240, 108136 (2022). https://doi.org/10.1016/j.knosys.2022.108136

    Article  Google Scholar 

  10. Maiti, N., Desai, U., Ray, A.: Application of mathematical morphology in measurement of droplet size distribution in dropwise condensation. Thin Solid Films 376(1), 16–25 (2000). https://doi.org/10.1016/S0040-6090(00)01396-1

    Article  Google Scholar 

  11. McClements, D.J., Jafari, S.M.: Improving emulsion formation, stability and performance using mixed emulsifiers: a review. Adv. Coll. Interface. Sci. 251, 55–79 (2018). https://doi.org/10.1016/j.cis.2017.12.001

    Article  Google Scholar 

  12. Mobahi, M., Sadati, S.H.: An improved deep learning solution for object detection in self-driving cars. In: 2020 28th Iranian Conference on Electrical Engineering (ICEE), pp. 1–5. IEEE (2020). https://doi.org/10.1109/ICEE50131.2020.9260870

  13. Patil, A., Sægrov, B., Panjwani, B.: Advanced deep learning for dynamic emulsion stability measurement. Comput. Chem. Eng. 157, 107614 (2022). https://doi.org/10.1016/j.compchemeng.2021.107614

    Article  Google Scholar 

  14. Pera-Titus, M., Leclercq, L., Clacens, J.M., De Campo, F., Nardello-Rataj, V.: Pickering interfacial catalysis for biphasic systems: from emulsion design to green reactions. Angew. Chem. Int. Ed. 54(7), 2006–2021 (2015). https://doi.org/10.1002/anie.201402069

    Article  Google Scholar 

  15. Pickering, S.U.: Cxcvi.-emulsions. J. Chem. Soc. Trans. 91, 2001–2021 (1907)

    Google Scholar 

  16. Ponnusamy, A.: cvlib - high level computer vision library for python (2018). https://github.com/arunponnusamy/cvlib

  17. Ramsden, W.: Separation of solids in the surface-layers of solutions and ‘suspensions’ (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation).-preliminary account. Proc. Roy. Soc. Lond. 72(477–486), 156–164 (1904)

    Google Scholar 

  18. Redmon, J.: Darknet: open source neural networks in c (2013–2016). http://pjreddie.com/darknet/

  19. Roman, F.F., de Tuesta, J.L.D., Sanches, F.K., Silva, A.S., and P.M.: Selective denitrification of simulated oily wastewater by oxidation using janus-structured carbon nanotubes. Catal. Today 114001 (2023). https://doi.org/10.1016/j.cattod.2023.01.008

  20. Roy, A.M., Bhaduri, J.: Real-time growth stage detection model for high degree of occultation using densenet-fused yolov4. Comput. Electron. Agric. 193 (2022). https://doi.org/10.1016/j.compag.2022.106694

  21. Roy, A.M., Bose, R., Bhaduri, J.: A fast accurate fine-grain object detection model based on yolov4 deep neural network. Neural Comput. Appl. 1–27 (2022). https://doi.org/10.1007/s00521-021-06651-x

  22. Schuster, S., et al.: Analysis of w1/o/w2 double emulsions with CLSM: statistical image processing for droplet size distribution. Chem. Eng. Sci. 81, 84–90 (2012). https://doi.org/10.1016/j.ces.2012.06.059

    Article  Google Scholar 

  23. Shewan, H.M., Stokes, J.R.: Review of techniques to manufacture micro-hydrogel particles for the food industry and their applications. J. Food Eng. 119(4), 781–792 (2013). https://doi.org/10.1016/j.jfoodeng.2013.06.046

    Article  Google Scholar 

  24. Unnikrishnan, S., Donovan, J., Macpherson, R., Tormey, D.: In-process analysis of pharmaceutical emulsions using computer vision and artificial intelligence. Chem. Eng. Res. Des. 166, 281–294 (2021). https://doi.org/10.1016/j.cherd.2020.12.010

    Article  Google Scholar 

  25. Walia, R., Sharma, S., Shrivastava, S.: A methodology for early detection of plant diseases using real time object detection algorithm. In: Boumerdassi, S., Ghogho, M., Renault, É. (eds.) SSA 2021. CCIS, vol. 1470, pp. 122–139. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88259-4_9

    Chapter  Google Scholar 

  26. Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: Yolov7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors (2022)

    Google Scholar 

  27. Yang, Y., et al.: An overview of pickering emulsions: solid-particle materials, classification, morphology, and applications. Front. Pharmacol. 8, 287 (2017). https://doi.org/10.3389/fphar.2017.00287

    Article  Google Scholar 

  28. Zhang, S., Liang, X., Huang, X., Wang, K., Qiu, T.: Precise and fast microdroplet size distribution measurement using deep learning. Chem. Eng. Sci. 247, 116926 (2022). https://doi.org/10.1016/j.ces.2021.116926

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by FCT - Fundação para a Ciência e Tecnologia within the R &D Units Project Scope: UIDB/05757/2020, UIDP/05757/2020, UIDB/00690/2020, UIDB/50020/2020, and UIDB/00319/ 2020. Adriano Silva was supported by Doctoral Grant SFRH/BD/151346/2021 financed by the Portuguese Foundation for Science and Technology (FCT), and with funds from NORTE 2020, under MIT Portugal Program. Fernanda F. Roman was supported by FCT and FSE with the PhD research grant SFRH/BD/143 224/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Mendes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mendes, J. et al. (2024). Deep Learning-Based Classification and Quantification of Emulsion Droplets: A YOLOv7 Approach. In: Pereira, A.I., Mendes, A., Fernandes, F.P., Pacheco, M.F., Coelho, J.P., Lima, J. (eds) Optimization, Learning Algorithms and Applications. OL2A 2023. Communications in Computer and Information Science, vol 1982 . Springer, Cham. https://doi.org/10.1007/978-3-031-53036-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53036-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53035-7

  • Online ISBN: 978-3-031-53036-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics