Skip to main content

Fault Classification of Wind Turbine: A Comparison of Hyperparameter Optimization Methods

  • Conference paper
  • First Online:
Optimization, Learning Algorithms and Applications (OL2A 2023)

Abstract

The last few years have been marked by the insertion of renewable technologies in the global energy matrix, such as wind and solar energy, which are considered clean energies with low environmental impact. Wind turbines, responsible for the energy conversion process, are complex equipment that are expensive and susceptible to numerous failures. Monitoring turbine components can help detect failures before they occur, reducing equipment maintenance costs. This work compares the training time of different techniques for tuning hyperparameters in supervised machine-learning models for fault detection in wind turbines. Results show the importance of data optimization during model training.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://pandas.pydata.org/.

  2. 2.

    https://numpy.org/.

  3. 3.

    https://scikit-learn.org/stable/.

References

  1. Kost, C, et al.: Levelized Cost of electricity- Renewable Energy Technologies. Fraunhofer Institute for Solar Energy Systems (ISE), June 2021. https://www.ise.fraunhofer.de/en/publications/studies/cost-of-electricity.html

  2. GWEC “Global Wind Energy Council - Global Wind Report 2023”. https://gwec.net/globalwindreport2023/. Accessed 15 May 2023

  3. Blanco, M.A., et al.: Impact of target variable distribution type over the regression analysis in wind turbine data. In: International Conference and Workshop on Bioinspired Intelligence (IWOBI), pp. 1–7 (2017)

    Google Scholar 

  4. Pandit, R., Astolfi, D., Hong, J., Infield, D., Santos, M.: SCADA data for wind turbine data-driven condition/performance monitoring: a review on state-of-art, challenges, and future trends. Wind Eng. 47(2), 422–441 (2023)

    Article  Google Scholar 

  5. Stetco, A., et al.: Machine learning methods for wind turbine condition monitoring: a review. Renew. Energy 133, 620–635 (2019)

    Article  Google Scholar 

  6. Garan, M., Tidriri, K., Kovalenko, I.: A data-centric machine learning methodology: application on predictive maintenance of wind turbines. Energies 15(3), 826 (2022)

    Article  Google Scholar 

  7. Badihi, H., Zhang, Y., Jiang, B., Pillay, P., Rakheja, S.: A comprehensive review on signal-based and model-based condition monitoring of wind turbines: fault diagnosis and lifetime prognosis. Proc. IEEE 110(6), 754–806 (2022)

    Article  Google Scholar 

  8. Dao, P.B.: Condition monitoring and fault diagnosis of wind turbines based on structural break detection in SCADA data. Renew. Energy 185, 641–654 (2022)

    Article  Google Scholar 

  9. Mitchell, T.M.: Machine Learning, vol. 1. McGraw-hill, New York (2007)

    Google Scholar 

  10. Marsland, S.: Machine Learning: An Algorithmic Perspective. CRC Press, Boca Raton (2015)

    Google Scholar 

  11. Bishop, C.M., and Nasrabadi, N.M.: Pattern Recognition and Machine Learning, vol. 4. No. 4. Springer, New York (2006)

    Google Scholar 

  12. Russell, S.J.: Artificial Intelligence A Modern Approach. Pearson Education Inc., London (2010)

    Google Scholar 

  13. Japa, L., Serqueira, M., Mendonça, I., Aritsugi, M., Bezerra, E., González, P.H.: A Population-based Hybrid Approach for Hyperparameter Optimization of Neural Networks. IEEE Access (2023)

    Google Scholar 

  14. Agrawal, T.: Hyperparameter Optimization in Machine Learning: Make your Machine Learning and Deep Learning Models More Efficient. Apress, New York (2021)

    Book  Google Scholar 

  15. Li, L., Jamieson, K., Rostamizadeh, et al.: A system for massively parallel hyperparameter tuning. Proc. Mach. Learn. Syst. 2, 230–246 (2020)

    Google Scholar 

  16. Soper, D.S.: Hyperparameter optimization using successive halving with greedy cross-validation. Algorithms 16(1), 17 (2022)

    Article  Google Scholar 

  17. Norvig, P., Russell, S.: Artificial Intelligence: A Modern Approach, Pearson Education, London (2021)

    Google Scholar 

  18. Gareth, J., Daniela, W., Trevor, H., Robert, T.: An Introduction to Statistical Learning: with Applications in R. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-7138-7

  19. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  20. Kohavi, R., Provost, F.: “Glossary of terms,” Glossary of Terms Journal of Machine Learning. https://ai.stanford.edu/ronnyk/glossary.html. Accessed 08 Jul 2022

  21. EDP Open Data. https://opendata.edp.com/pages/homepage/. Accessed 15 Aug 2021

  22. Menezes, D., Mendes, M., Almeida, J.A., Farinha, T.: Wind farm and resource datasets: a comprehensive survey and overview. Energies 13(18), 4702 (2020)

    Article  Google Scholar 

  23. de Sá, F. P., et al.: Wind turbine fault detection: a semi-supervised learning approach with automatic evolutionary feature selection. In: 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 323–328. IEEE (2020)

    Google Scholar 

  24. Pinna, D., et al.: Fault identification in wind turbines: a data-centric machine learning approach. In: International Conference on Computational Science and Computational Intelligence (CSCI) (2022)

    Google Scholar 

  25. Géron, A.: Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. “O’Reilly Media, Inc”.. (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana I. Pereira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pinna, D. et al. (2024). Fault Classification of Wind Turbine: A Comparison of Hyperparameter Optimization Methods. In: Pereira, A.I., Mendes, A., Fernandes, F.P., Pacheco, M.F., Coelho, J.P., Lima, J. (eds) Optimization, Learning Algorithms and Applications. OL2A 2023. Communications in Computer and Information Science, vol 1982 . Springer, Cham. https://doi.org/10.1007/978-3-031-53036-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53036-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53035-7

  • Online ISBN: 978-3-031-53036-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics