Skip to main content

Automated Make and Model Identification of Reverse Shoulder Implants Using Deep Learning Methodology

  • Conference paper
  • First Online:
Recent Trends in Image Processing and Pattern Recognition (RTIP2R 2023)

Abstract

Identification of an Orthopaedic Implant before a revision surgery is very important. Failure to identify an implant causes surgical planning delays, inability to plan for the correct equipment requirements, and can result in poorer patient outcomes. This paper proposes a framework to identify, make and model of two different reverse shoulder implants from X-ray images using Deep Learning Techniques. Both Anterior Posterior and Lateral views of X-rays were used in the study and a comparison was made to identify which view enables better results in identification. Various pre-trained deep learning models such as VGG16, VGG19 and InceptionV3 were used for classification of implants. The proposed methodology identifies both the make and model of the implant with an accuracy of 95% using both Anterior Posterior and Lateral Views and an accuracy of 86.67% using only the Anterior view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Urban, G., Porhemmat, S., Stark, M., Feeley, B., Okada, K., Baldi, P.: Classifying shoulder implants in X-ray images using deep learning. Comput. Struct. Biotechnol. J. 18, 967–972 (2020). https://doi.org/10.1016/j.csbj.2020.04.005

    Article  Google Scholar 

  2. Sultan, H., Owais, M., Park, C., Mahmood, T., Haider, A., Park, K.R.: Artificial intelligence-based recognition of different types of shoulder implants in X-ray scans based on dense residual ensemble-network for personalized medicine. J. Personalized Med. 11(6), 482 (2021)

    Article  Google Scholar 

  3. Hermena, S., Rednam, M.: Reverse shoulder arthroplasty, 1 October 2022. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; PMID: 34662059, January 2023

    Google Scholar 

  4. Harrison, A.K., Knudsen, M.L., Braman, J.P.: Hemiarthroplasty and total shoulder arthroplasty conversion to reverse total shoulder arthroplasty. Curr. Rev. Musculoskelet. Med. 13, 501–508 (2020)

    Google Scholar 

  5. Farley, K.X., Wilson, J.M., Daly, C.A., Gottschalk, M.B., Wagner, E.R.: The incidence of shoulder arthroplasty: rise and future projections compared to hip and knee arthroplasty. JSES Open Access 3(4), 244 (2019)

    Article  Google Scholar 

  6. Klug, A., Herrmann, E., Fischer, S., Hoffmann, R., Gramlich, Y.: Projections of primary and revision shoulder arthroplasty until 2040: facing a massive rise in fracture-related procedures. J. Clin. Med. 10(21), 5123 (2021)

    Article  Google Scholar 

  7. Villatte, G., Erivan, R., Barth, J., Bonnevialle, N., Descamps, S., Boisgard, S.: Progression and projection for shoulder surgery in France, 2012–2070: epidemiologic study with trend and projection analysis. Orthop. Traumatol. Surg. Res. 106(6), 1067–1077 (2020)

    Article  Google Scholar 

  8. Padegimas, E.M., Maltenfort, M., Lazarus, M.D., Ramsey, M.L., Williams, G.R., Namdari, S.: Future patient demand for shoulder arthroplasty by younger patients: national projections. Clin. Orthopaedics Relat. Res. 473, 1860–1867 (2015)

    Google Scholar 

  9. Fossati, C., Vitale, M., Forin Valvecchi, T., Gualtierotti, R., Randelli, P.S.: Management of painful shoulder arthroplasty: a narrative review. Pain Ther. 9, 427–439 (2020)

    Article  Google Scholar 

  10. Borjali, A., Chen, A.F., Muratoglu, O.K., Morid, M.A., Varadarajan, K.M.: Detecting total hip replacement prosthesis design on plain radiographs using deep convolutional neural network. J. Orthopaedic Res. 38(7), 1465–1471 (2020)

    Google Scholar 

  11. Olczak, J., et al.: Artificial intelligence for analyzing orthopedic trauma radiographs: deep learning algorithms—are they on par with humans for diagnosing fractures? Acta Orthop. 88(6), 581–586 (2017)

    Article  Google Scholar 

  12. Borjali, A., et al.: Comparing the performance of a deep convolutional neural network with orthopedic surgeons on the identification of total hip prosthesis design from plain radiographs. Med. Phys. 48(5), 2327–2336 (2021)

    Article  Google Scholar 

  13. Takahashi, T., Nozaki, K., Gonda, T., Mameno, T., Wada, M., Ikebe, K.: Identification of dental implants using deep learning—pilot study. Int. J. Implant Dent. 6, 1–6 (2020)

    Article  Google Scholar 

  14. Tiulpin, A., Thevenot, J., Rahtu, E., Lehenkari, P., Saarakkala, S.: Automatic knee osteoarthritis diagnosis from plain radiographs: a deep learning-based approach. Sci. Rep. 8(1), 1–10 (2018)

    Article  Google Scholar 

  15. Yi, P.H., et al.: Automated detection and classification of shoulder arthroplasty models using deep learning. Skeletal Radiol. 49, 1623–1632 (2020)

    Article  Google Scholar 

  16. Vo, M.T., Vo, A.H., Le, T.: A robust framework for shoulder implant X-ray image classification. Data Technol. Appl. 56(3), 447–460 (2022)

    Google Scholar 

  17. Mikołajczyk, A., Grochowski, M.: Data augmentation for improving deep learning in image classification problem. In: 2018 International Interdisciplinary PhD Workshop (IIPhDW), pp. 117–122. IEEE (2018)

    Google Scholar 

  18. Khalifa, N.E., Loey, M., Mirjalili, S.: A comprehensive survey of recent trends in deep learning for digital images augmentation. Artif. Intell. Rev. 55, pp. 1–27 (2022)

    Google Scholar 

  19. Sarker, I.H.: Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions. SN Comput. Sci. 2(6), 420 (2021)

    Article  Google Scholar 

  20. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  21. Bansal, M., Kumar, M., Sachdeva, M., Mittal, A.: Transfer learning for image classification using VGG19: Caltech-101 image data set. J. Ambient Intell. Human. Comput. 14, 1–12 (2021)

    Google Scholar 

  22. Wang, C., et al.: Pulmonary image classification based on inception-v3 transfer learning model (2019)

    Google Scholar 

  23. Sistaninejhad, B., Rasi, H., Nayeri, P.: A review paper about deep learning for medical image analysis. Comput. Math. Methods Med. 2023, 1 (2023)

    Google Scholar 

  24. Vakili, M., Ghamsari, M., Rezaei, M.: Performance analysis and comparison of machine and deep learning algorithms for IoT data classification. arXiv preprint arXiv:2001.09636 (2020)

  25. Ramanathan, A., Christy Bobby, T.: Classification of corpus callosum layer in mid-saggital MRI images using machine learning techniques for autism disorder. In: Modeling, Machine Learning and Astronomy: First International Conference, MMLA 2019, Bangalore, India, 22–23 November 2019, Revised Selected Papers, vol. 1, pp. 78–91. Springer Singapore (2020). https://doi.org/10.1007/978-981-33-6463-9_7

  26. Lydia, A., Francis, S.: AdaGrad—an optimizer for stochastic gradient descent. Int. J. Inf. Comput. Sci. 6(5), 566–568 (2019)

    Google Scholar 

  27. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  28. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747 (2016)

  29. Yılmaz, A.: Shoulder implant manufacturer detection by using deep learning: proposed channel selection layer. Coatings 11(3), 346 (2021)

    Article  Google Scholar 

  30. Geng, E.A., et al.: Development of a machine learning algorithm to identify total and reverse shoulder arthroplasty implants from X-ray images. J. Orthop. 35, 74–78 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vineet Batta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dubey, V.P. et al. (2024). Automated Make and Model Identification of Reverse Shoulder Implants Using Deep Learning Methodology. In: Santosh, K., et al. Recent Trends in Image Processing and Pattern Recognition. RTIP2R 2023. Communications in Computer and Information Science, vol 2027. Springer, Cham. https://doi.org/10.1007/978-3-031-53085-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53085-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53084-5

  • Online ISBN: 978-3-031-53085-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics