Skip to main content

Federated Unlearning and Server Right to Forget: Handling Unreliable Client Contributions

  • Conference paper
  • First Online:
Recent Trends in Image Processing and Pattern Recognition (RTIP2R 2023)

Abstract

In the context of federated learning, the concept of federated unlearning has emerged, aiming to realize the “right to be forgotten”. The current research primarily focuses on designing unlearning techniques for clients “right to be forgotten”, it has often bypassed to consider the server’s authority to discard the client contribution without taking any consent from participating clients, we named it “right to forget”. These client contributions may contain adverse effects that could significantly impact global aggregation. In this research paper, we conduct a comprehensive review of previous studies related to federated unlearning and explore the server “right to forget” client’s contributions. We also introduce new taxonomies to classify and summarize the latest advancements in federated unlearning algorithms. Moreover, we take the first step to present the server right to forget (SRF), a novel unlearning methodology that enables the server to remove unreliable client contributions to improve global model accuracy. Experiments on two different kinds of datasets and models demonstrate the effectiveness of our method. We envision our effort as a first step toward the server’s right to forget the client’s contribution in the context of federated unlearning toward adherence to legal and ethical standards in a just and transparent manner.

Muntazir Mehdi, Amaad Hussain: Equally Contributed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The unlearning condition is that the global model’s accuracy in the current round must drop below that in the previous round.

References

  1. Voigt, Paul, von dem Bussche, Axel: The EU General Data Protection Regulation (GDPR): A Practical Guide. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57959-7

    Book  Google Scholar 

  2. Mantelero, A.: The EU proposal for a general data protection regulation and the roots of the ‘right to be forgotten’. Comput. Law & Secur. Rev. 29(3), 229–235 (2013)

    Article  Google Scholar 

  3. Zaeem, R.N., Suzanne Barber, K.: The effect of the GDPR on privacy policies: recent progress and future promise. ACM Trans. Manag. Inf. Syst. (TMIS) 12(1), 1–20 (2020)

    Google Scholar 

  4. Ginart, A., Guan, M., Valiant, G., Zou, J.Y.: Making AI forget you: data deletion in machine learning. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  5. Liu, G., Ma, X., Yang, Y., Wang, C., Liu, J.: Federated unlearning. arXiv preprint arXiv:2012.13891 (2020)

  6. Kairouz, P., et al.: Advances and open problems in federated learning. Found. Trends® Mach. Learn. 14(1–2), 1–210 (2021)

    Google Scholar 

  7. Navia-Vázquez, A., Gutierrez-Gonzalez, D., Parrado-Hernández, E., Navarro-Abellan, J.J.: Distributed support vector machines. IEEE Tran. Neural Networks 17(4), 1091 (2006)

    Google Scholar 

  8. Ayush, K.T., Vikram, S.C., Murari, M., Mohan, K.: Deep regression unlearning. arXiv preprint arXiv:2210.08196 (2022)

  9. Manaar, A., Hithem, L., Michail, M.: Get rid of your trail: remotely erasing backdoors in federated learning. arXiv preprint arXiv:2304.10638 (2023)

  10. Nguyen, T.T., Huynh, T.T., Nguyen, P.L., Liew, A.W.-C., Yin, H., Nguyen, Q.H.V.: A survey of machine unlearning. arXiv preprint arXiv:2209.02299 (2022)

  11. Liu, G., Ma, X., Yang, Y., Wang, C., Liu, J.,: FedEraser: enabling efficient client-level data removal from federated learning models. In: 2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS), pp. 1–10. IEEE (2021)

    Google Scholar 

  12. Liu, Y., Xu, L., Yuan, X., Wang, C., Li, B.: The right to be forgotten in federated learning: an efficient realization with rapid retraining. In: IEEE INFOCOM 2022-IEEE Conference on Computer Communications, pp. 1749–1758. IEEE (2022)

    Google Scholar 

  13. Anisa, H., Swanand, K., Ambrish, R., Nathalie, B.: Federated unlearning: how to efficiently erase a client in FL? arXiv preprint arXiv:2207.05521 (2022)

  14. Wu, C., Zhu, S., Mitra, P.: Federated unlearning with knowledge distillation. arXiv preprint arXiv:2201.09441 (2022)

  15. Lucas, B., et al.: Machine unlearning. In: Proceedings of the 42nd IEEE Symposium on Security and Privacy, SP 2021, Washington, DC, USA. IEEE Computer Society (2021)

    Google Scholar 

  16. Stuart, L.P.: The california consumer privacy act: towards a European-style privacy regime in the united states. J. Tech. L. & Pol’y, 23, 68 (2018)

    Google Scholar 

  17. Yuan, W., Yin, H., Wu, F., Zhang, S., He, T., Wang, H.: Federated unlearning for on-device recommendation. In: Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, pp. 393–401 (2023)

    Google Scholar 

  18. Li, G., Shen, L., Sun, Y., Hu, Y., Hu, H., Tao, D.: Subspace based federated unlearning. arXiv preprint arXiv:2302.12448 (2023)

  19. Liu, Y., Ma, Z., Liu, X., Ma, J.: Learn to forget: user-level memorization elimination in federated learning. arXiv preprint arXiv:2003.10933 (2020)

  20. Leijie, W., Guo, S., Wang, J., Hong, Z., Zhang, J., Ding, Y.: Federated unlearning: guarantee the right of clients to forget. IEEE Network 36(5), 129–135 (2022)

    Article  Google Scholar 

  21. Gao, X., et al.: VeriFi: towards verifiable federated unlearning. arXiv preprint arXiv:2205.12709 (2022)

  22. Liu, Y., Ma, Z., Yang, Y., Liu, X., Ma, J., Ren, K.: RevFRF: enabling cross-domain random forest training with revocable federated learning. IEEE Trans. Dependable Secure Comput. 19(6), 3671–3685 (2021)

    Article  Google Scholar 

  23. LeCun, Y.: The MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist/, (1998)

  24. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

  25. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ameen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bano, H., Ameen, M., Mehdi, M., Hussain, A., Wang, P. (2024). Federated Unlearning and Server Right to Forget: Handling Unreliable Client Contributions. In: Santosh, K., et al. Recent Trends in Image Processing and Pattern Recognition. RTIP2R 2023. Communications in Computer and Information Science, vol 2027. Springer, Cham. https://doi.org/10.1007/978-3-031-53085-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53085-2_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53084-5

  • Online ISBN: 978-3-031-53085-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics