Skip to main content

E2Evideo: End to End Video and Image Pre-processing and Analysis Tool

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2024)

Abstract

In this demonstration paper, we present “e2evideo” a versatile Python package composed of domain-independent modules. These modules can be seamlessly customised to suit specialised tasks by modifying specific attributes, allowing users to tailor functionality to meet the requirements of a targeted task. The package offers a variety of functionalities, such as interpolating missing video frames, background subtraction, image resizing, and extracting features utilising state-of-the-art machine learning techniques. With its comprehensive set of features, “e2evideo” stands as a facilitating tool for developers in the creation of image and video processing applications, serving diverse needs across various fields of computer vision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://opencv.org/.

  2. 2.

    https://github.com/simulamet-host/video_analytics.

References

  1. Al Outa, A., et al.: Cellular, a cell autophagy imaging dataset. Sci. Data 10(1), 806 (2023)

    Article  Google Scholar 

  2. Culjak, I., Abram, D., Pribanic, T., Dzapo, H., Cifrek, M.: A brief introduction to OpenCV. In: 2012 Proceedings of the 35th International Convention MIPRO, pp. 1725–1730. IEEE (2012)

    Google Scholar 

  3. Harris, C.R., et al.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2

    Article  Google Scholar 

  4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  5. Khalid, S., Khalil, T., Nasreen, S.: A survey of feature selection and feature extraction techniques in machine learning. In: 2014 Science and Information Conference, pp. 372–378. IEEE (2014)

    Google Scholar 

  6. Klein, A., et al.: imageio/imageio: v2.31.3 (2023). https://doi.org/10.5281/zenodo.8313513

  7. Lu, T., Palaiahnakote, S., Tan, C.L., Liu, W.: Video preprocessing. In: Video Text Detection. ACVPR, pp. 19–47. Springer, London (2014). https://doi.org/10.1007/978-1-4471-6515-6_2

    Chapter  Google Scholar 

  8. Müller, D., Kramer, F.: MIScnn: a framework for medical image segmentation with convolutional neural networks and deep learning. BMC Med. Imaging 21, 1–11 (2021). https://doi.org/10.1186/s12880-020-00543-7

    Article  Google Scholar 

  9. Nordmo, T.A.S., et al.: Njord: a fishing trawler dataset. In: Proceedings of the 13th ACM Multimedia Systems Conference, pp. 197–202 (2022)

    Google Scholar 

  10. Oquab, M., et al.: Dinov2: learning robust visual features without supervision. arXiv preprint: arXiv:2304.07193 (2023)

  11. Svoren, H., et al.: Toadstool: a dataset for training emotional intelligent machines playing super mario bros. In: Proceedings of the 11th ACM Multimedia Systems Conference, pp. 309–314 (2020)

    Google Scholar 

  12. Van der Walt, S., et al.: scikit-image: image processing in python. PeerJ 2, e453 (2014)

    Article  Google Scholar 

  13. Zivkovic, Z., Van Der Heijden, F.: Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recogn. Lett. 27(7), 773–780 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faiga Alawad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alawad, F., Halvorsen, P., Riegler, M.A. (2024). E2Evideo: End to End Video and Image Pre-processing and Analysis Tool. In: Rudinac, S., et al. MultiMedia Modeling. MMM 2024. Lecture Notes in Computer Science, vol 14557. Springer, Cham. https://doi.org/10.1007/978-3-031-53302-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53302-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53301-3

  • Online ISBN: 978-3-031-53302-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics