Abstract
In this demonstration paper, we present “e2evideo” a versatile Python package composed of domain-independent modules. These modules can be seamlessly customised to suit specialised tasks by modifying specific attributes, allowing users to tailor functionality to meet the requirements of a targeted task. The package offers a variety of functionalities, such as interpolating missing video frames, background subtraction, image resizing, and extracting features utilising state-of-the-art machine learning techniques. With its comprehensive set of features, “e2evideo” stands as a facilitating tool for developers in the creation of image and video processing applications, serving diverse needs across various fields of computer vision.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Al Outa, A., et al.: Cellular, a cell autophagy imaging dataset. Sci. Data 10(1), 806 (2023)
Culjak, I., Abram, D., Pribanic, T., Dzapo, H., Cifrek, M.: A brief introduction to OpenCV. In: 2012 Proceedings of the 35th International Convention MIPRO, pp. 1725–1730. IEEE (2012)
Harris, C.R., et al.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Khalid, S., Khalil, T., Nasreen, S.: A survey of feature selection and feature extraction techniques in machine learning. In: 2014 Science and Information Conference, pp. 372–378. IEEE (2014)
Klein, A., et al.: imageio/imageio: v2.31.3 (2023). https://doi.org/10.5281/zenodo.8313513
Lu, T., Palaiahnakote, S., Tan, C.L., Liu, W.: Video preprocessing. In: Video Text Detection. ACVPR, pp. 19–47. Springer, London (2014). https://doi.org/10.1007/978-1-4471-6515-6_2
Müller, D., Kramer, F.: MIScnn: a framework for medical image segmentation with convolutional neural networks and deep learning. BMC Med. Imaging 21, 1–11 (2021). https://doi.org/10.1186/s12880-020-00543-7
Nordmo, T.A.S., et al.: Njord: a fishing trawler dataset. In: Proceedings of the 13th ACM Multimedia Systems Conference, pp. 197–202 (2022)
Oquab, M., et al.: Dinov2: learning robust visual features without supervision. arXiv preprint: arXiv:2304.07193 (2023)
Svoren, H., et al.: Toadstool: a dataset for training emotional intelligent machines playing super mario bros. In: Proceedings of the 11th ACM Multimedia Systems Conference, pp. 309–314 (2020)
Van der Walt, S., et al.: scikit-image: image processing in python. PeerJ 2, e453 (2014)
Zivkovic, Z., Van Der Heijden, F.: Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recogn. Lett. 27(7), 773–780 (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Alawad, F., Halvorsen, P., Riegler, M.A. (2024). E2Evideo: End to End Video and Image Pre-processing and Analysis Tool. In: Rudinac, S., et al. MultiMedia Modeling. MMM 2024. Lecture Notes in Computer Science, vol 14557. Springer, Cham. https://doi.org/10.1007/978-3-031-53302-0_19
Download citation
DOI: https://doi.org/10.1007/978-3-031-53302-0_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-53301-3
Online ISBN: 978-3-031-53302-0
eBook Packages: Computer ScienceComputer Science (R0)