Skip to main content

Facilitating the Production of Well-Tailored Video Summaries for Sharing on Social Media

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2024)

Abstract

This paper presents a web-based tool that facilitates the production of tailored summaries for online sharing on social media. Through an interactive user interface, it supports a “one-click” video summarization process. Based on the integrated AI models for video summarization and aspect ratio transformation, it facilitates the generation of multiple summaries of a full-length video according to the needs of target platforms with regard to the video’s length and aspect ratio.

This work was supported by the EU Horizon 2020 programme under grant agreement H2020-951911 AI4Media.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brevify: Video Summarizer. https://devpost.com/software/brevify-video-summarizer. Accessed 29 Sept 2023

  2. Cloudinary: Easily create engaging video summaries. https://smart-ai-transformations.cloudinary.com. Accessed Sept 2023

  3. Cognitive Mill: Cognitive Computing Cloud Platform For Media And Entertainment. https://cognitivemill.com. Accessed Sept 2023

  4. Eightify: Youtube Summary with ChatGPT. https://chrome.google.com/webstore/detail/eightify-youtube-summary/cdcpabkolgalpgeingbdcebojebfelgb. Accessed Sept 2023

  5. Pictory: Automatically summarize long videos. https://pictory.ai/pictory-features/auto-summarize-long-videos. Accessed 29 Sept 2023

  6. summarize.tech: AI-powered video summaries. https://www.summarize.tech. Accessed 29 Sept 2023

  7. Video Highlight: the fastest way to summarize and take notes from videos. https://videohighlight.com. Accessed 29 Sept 2023

  8. Video Summarizer - Summarize YouTube Videos. https://mindgrasp.ai/video-summarizer. Accessed 29 Sept 2023

  9. VidSummize - AI YouTube Summary with Chat GPT. https://chrome.google.com/webstore/detail/vidsummize-ai-youtube-sum/gidcfccogfdmkfdfmhfdmfnibafoopic. Accessed 29 Sept 2023

  10. Apostolidis, E., Adamantidou, E., Metsai, A.I., Mezaris, V., Patras, I.: Unsupervised video summarization via attention-driven adversarial learning. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11961, pp. 492–504. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37731-1_40

    Chapter  Google Scholar 

  11. Apostolidis, E., Adamantidou, E., Metsai, A.I., Mezaris, V., Patras, I.: AC-SUM-GAN: connecting actor-critic and generative adversarial networks for unsupervised video summarization. IEEE Trans. Circ. Syst. Video Technol. 31(8), 3278–3292 (2021). https://doi.org/10.1109/TCSVT.2020.3037883

  12. Apostolidis, E., Adamantidou, E., Metsai, A.I., Mezaris, V., Patras, I.: Video summarization using deep neural networks: a survey. Proc. IEEE 109(11), 1838–1863 (2021). https://doi.org/10.1109/JPROC.2021.3117472

    Article  Google Scholar 

  13. Apostolidis, K., Mezaris, V.: A fast smart-cropping method and dataset for video retargeting. In: Proceedings of the IEEE International Conference on Image Processing (ICIP), pp. 1956–1960 (2021)

    Google Scholar 

  14. Apostolidis, K., Mezaris, V.: A web service for video smart-cropping. In: 2021 IEEE International Symposium on Multimedia (ISM), pp. 25–26. IEEE (2021)

    Google Scholar 

  15. Awad, G., et al.: TRECVID 2017: evaluating ad-hoc and instance video search, events detection, video captioning and hyperlinking. In: 2017 TREC Video Retrieval Evaluation, TRECVID 2017, Gaithersburg, MD, USA, 13–15 November 2017. National Institute of Standards and Technology (NIST) (2017)

    Google Scholar 

  16. Baraldi, L., Grana, C., Cucchiara, R.: Shot and scene detection via hierarchical clustering for re-using broadcast video. In: Azzopardi, G., Petkov, N. (eds.) CAIP 2015. LNCS, vol. 9256, pp. 801–811. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23192-1_67

    Chapter  Google Scholar 

  17. Collyda, C., Apostolidis, K., Apostolidis, E., Adamantidou, E., Metsai, A.I., Mezaris, V.: A web service for video summarization. In: ACM International Conference on Interactive Media Experiences (IMX), pp. 148–153 (2020)

    Google Scholar 

  18. De Avila, S.E.F., Lopes, A.P.B., da Luz Jr, A., de Albuquerque Araújo, A.: VSUMM: a mechanism designed to produce static video summaries and a novel evaluation method. Pattern Recogn. Lett. 32(1), 56–68 (2011)

    Google Scholar 

  19. Gygli, M., Grabner, H., Riemenschneider, H., Van Gool, L.: Creating summaries from user videos. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 505–520. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_33

    Chapter  Google Scholar 

  20. He, X., et al.: Unsupervised video summarization with attentive conditional generative adversarial networks. In: Proceedings of the 27th ACM International Conference on Multimedia (MM 2019), pp. 2296–2304. ACM, New York, NY, USA (2019)

    Google Scholar 

  21. Hu, F., et al.: TinyHD: efficient video saliency prediction with heterogeneous decoders using hierarchical maps distillation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2051–2060 (2023)

    Google Scholar 

  22. Li, P., Ye, Q., Zhang, L., Yuan, L., Xu, X., Shao, L.: Exploring global diverse attention via pairwise temporal relation for video summarization. Pattern Recogn. 111, 107677 (2021)

    Article  Google Scholar 

  23. Liang, G., Lv, Y., Li, S., Zhang, S., Zhang, Y.: Video summarization with a convolutional attentive adversarial network. Pattern Recogn. 131, 108840 (2022)

    Article  Google Scholar 

  24. Liu, T., Meng, Q., Huang, J.J., Vlontzos, A., Rueckert, D., Kainz, B.: Video summarization through reinforcement learning with a 3D spatio-temporal U-Net. Trans. Image Proc. 31, 1573–1586 (2022)

    Article  Google Scholar 

  25. Min, H., Ruimin, H., Zhongyuan, W., Zixiang, X., Rui, Z.: Spatiotemporal two-stream LSTM network for unsupervised video summarization. Multimed. Tools Appl. 81, 40489–40510 (2022)

    Article  Google Scholar 

  26. Phaphuangwittayakul, A., Guo, Y., Ying, F., Xu, W., Zheng, Z.: Self-attention recurrent summarization network with reinforcement learning for video summarization task. In: Proceedings of the 2021 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 (2021). https://doi.org/10.1109/ICME51207.2021.9428142

  27. Rochan, M., Ye, L., Wang, Y.: Video summarization using fully convolutional sequence networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 358–374. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01258-8_22

    Chapter  Google Scholar 

  28. Song, Y., Vallmitjana, J., Stent, A., Jaimes, A.: TVSum: summarizing web videos using titles. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5179–5187 (2015). https://doi.org/10.1109/CVPR.2015.7299154

  29. Souček, T., Lokoč, J.: Transnet V2: an effective deep network architecture for fast shot transition detection. arXiv preprint arXiv:2008.04838 (2020)

  30. Tang, S., Feng, L., Kuang, Z., Chen, Y., Zhang, W.: Fast video shot transition localization with deep structured models. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11361, pp. 577–592. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20887-5_36

    Chapter  Google Scholar 

  31. Zhao, B., Li, H., Lu, X., Li, X.: Reconstructive sequence-graph network for video summarization. IEEE Trans. Pattern Anal. Mach. Intell. 44, 2793–2801 (2021). https://doi.org/10.1109/TPAMI.2021.3072117

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evlampios Apostolidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Apostolidis, E., Apostolidis, K., Mezaris, V. (2024). Facilitating the Production of Well-Tailored Video Summaries for Sharing on Social Media. In: Rudinac, S., et al. MultiMedia Modeling. MMM 2024. Lecture Notes in Computer Science, vol 14557. Springer, Cham. https://doi.org/10.1007/978-3-031-53302-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53302-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53301-3

  • Online ISBN: 978-3-031-53302-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics