Abstract
In the evolving digital realm, generative networks have catalyzed an upsurge in deceptive media, encompassing manipulated facial imagery to tampered text, threatening both personal security and societal stability. While specialized detection networks exist for specific forgery types, their limitations in handling diverse online forgeries and resource constraints necessitate a more holistic approach. This paper presents a pioneering effort to efficiently adapt pre-trained large vision models (LVMs) for the critical task of forgery detection, emphasizing face forgery. Recognizing the inherent challenges in bridging pre-training tasks with forgery detection, we introduce a novel parameter-efficient adaptation strategy. Our investigations highlight the imperative of focusing on detailed, local features to discern forgery indicators. Departing from conventional methods, we propose the Detail-Enhancement Adapter (DE-Adapter), inspired by ‘Unsharp Masking’. By leveraging Gaussian convolution kernels and differential operations, the DE-Adapter enhances detailed representations. With our method, we achieved state-of-the-art performance with only 0.3% network adjustment. Especially when the number of training samples is limited, our method far surpasses other methods. Our work also provides a new perspective for the Uni-Vision Large Model, and we call on more fields to design suitable adapting schemes to expand the capabilities of large models instead of redesigning networks from scratch.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Afchar, D., Nozick, V., Yamagishi, J., Echizen, I.: MesoNet: a compact facial video forgery detection network. In: WIFS (2018)
Bitouk, D., Kumar, N., Dhillon, S., Belhumeur, P.N., Nayar, S.K.: Face swapping: automatically replacing faces in photographs. ACM Trans. Graph 27, 1–8 (2008)
Cai, H., Gan, C., Zhu, L., Han, S.: Tinytl: reduce memory, not parameters for efficient on-device learning. In: NeurIPS (2020)
Chen, S., Yao, T., Chen, Y., Ding, S., Li, J., Ji, R.: Local relation learning for face forgery detection. In: AAAI (2021)
Chen, S., et al.: Adaptformer: adapting vision transformers for scalable visual recognition. In: NeurIPS (2022)
Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. In: CVPR (2009)
Dhariwal, P., Nichol, A.Q.: Diffusion models beat GANs on image synthesis. In: NeurIPS (2021)
Dolhansky, B., et al.: The deepfake detection challenge (DFDC) dataset. CoRR (2020)
Dong, B., Zhou, P., Yan, S., Zuo, W.: LPT: long-tailed prompt tuning for image classification. CoRR (2022)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: ICLR (2021)
Fridrich, J.J., Kodovský, J.: Rich models for steganalysis of digital images. TIFS 7, 868–882 (2012)
Gao, Y., et al.: High-fidelity and arbitrary face editing. In: CVPR (2021)
Goodfellow, I.J., et al.: Generative adversarial networks. CoRR (2014)
Han, X., Morariu, V., Larry Davis, P.I., et al.: Two-stream neural networks for tampered face detection. In: CVPR Workshop (2017)
He, J., Zhou, C., Ma, X., Berg-Kirkpatrick, T., Neubig, G.: Towards a unified view of parameter-efficient transfer learning. In: ICLR (2022)
He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. In: CVPR (2022)
He, X., Li, C., Zhang, P., Yang, J., Wang, X.E.: Parameter-efficient fine-tuning for vision transformers. CoRR (2022)
Hu, E.J., et al.: Lora: low-rank adaptation of large language models. In: ICLR (2022)
Huang, H., et al.: Adaptive transformers for robust few-shot cross-domain face anti-spoofing. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13673, pp. 37–54. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19778-9_3
Huang, Z., Chan, K.C.K., Jiang, Y., Liu, Z.: Collaborative diffusion for multi-modal face generation and editing. In: CVPR (2023)
Jia, G., et al.: Inconsistency-aware wavelet dual-branch network for face forgery detection. Trans. Biom. Behav. Ident. Sci. 3, 308–319 (2021)
Jia, M., et al.: Visual prompt tuning. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13693, pp. 709–727. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19827-4_41
Juefei-Xu, F., Boddeti, V.N., Savvides, M.: Local binary convolutional neural networks. In: CVPR (2017)
Kim, K., et al.: Diffface: diffusion-based face swapping with facial guidance. CoRR (2022)
Li, L., et al.: Face x-ray for more general face forgery detection. In: CVPR (2020)
Li, Y., Yang, X., Sun, P., Qi, H., Lyu, S.: Celeb-DF: a large-scale challenging dataset for deepfake forensics. In: CVPR (2019)
Liu, H., et al. Spatial-phase shallow learning: rethinking face forgery detection in frequency domain. In: CVPR (2021)
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: ICCV (2021)
Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the 2020s. In: CVPR (2022)
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: ICLR (2019)
Miao, C., Tan, Z., Chu, Q., Liu, H., Hu, H., Yu, N.: F\({}^{\text{2}}\)trans: High-frequency fine-grained transformer for face forgery detection. TIFS (2023)
Nguyen, H.H., Fang, F., Yamagishi, J., Echizen, I.: Multi-task learning for detecting and segmenting manipulated facial images and videos. In: BTAS (2019)
Pan, J., Lin, Z., Zhu, X., Shao, J., Li, H.: St-adapter: parameter-efficient image-to-video transfer learning. In: NeurIPS (2022)
Paszke, A., et al.: Automatic differentiation in pytorch (2017)
Qian, Y., Yin, G., Sheng, L., Chen, Z., Shao, J.: Thinking in frequency: face forgery detection by mining frequency-aware clues. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) ECCV 2022. LNCS, vol. 12357, pp. 86–103. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_6
Rössler, A., Cet al.: Faceforensics++: learning to detect manipulated facial images. In: ICCV (2019)
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: IJCV (2020)
Shi, Z., Chen, Y., Gavves, E., Mettes, P., Snoek, C.G.M.: Unsharp mask guided filtering. TIP 30, 7472–7485 (2021)
Wang, C., Deng, W.: Representative forgery mining for fake face detection. In: CVPR (2021)
Wang, J., et al.: M2tr: multi-modal multi-scale transformers for deepfake detection. In: ICMR (2022)
Wang, Y., Xie, H., Xing, M., Wang, J., Zhu, S., Zhang, Y.: Detecting tampered scene text in the wild. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13688, pp. 215–232. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19815-1_13
Woo, S., et al.: Convnext v2: co-designing and scaling convnets with masked autoencoders. CoRR (2023)
Yao, G., et al.: One-shot face reenactment using appearance adaptive normalization. In: AAAI (2021)
Zhao, H., Wei, T., Zhou, W., Zhang, W., Chen, D., Yu, N.: Multi-attentional deepfake detection. In: CVPR (2021)
Zhou, P., Han, X., Morariu, V.I., Davis, L.S.: Two-stream neural networks for tampered face detection. In: CVPR Workshop (2017)
Zi, B., Chang, M., Chen, J., Ma, X., Jiang, Y.: Wilddeepfake: a challenging real-world dataset for deepfake detection. In: ACM MM (2020)
Acknowledgement
This work was supported in part by NSFC (62376156, 62322113), Shanghai Municipal Science and Technology Major Project (2021SHZDZX0102), and the Fundamental Research Funds for the Central Universities.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, L., Ma, C. (2024). Adapting Pretrained Large-Scale Vision Models for Face Forgery Detection. In: Rudinac, S., et al. MultiMedia Modeling. MMM 2024. Lecture Notes in Computer Science, vol 14557. Springer, Cham. https://doi.org/10.1007/978-3-031-53302-0_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-53302-0_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-53301-3
Online ISBN: 978-3-031-53302-0
eBook Packages: Computer ScienceComputer Science (R0)