Skip to main content

SSK-Yolo: Global Feature-Driven Small Object Detection Network for Images

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14554))

Included in the following conference series:

  • 344 Accesses

Abstract

Timely and effective locust detection to prevent locust plagues is crucial for safeguarding agricultural production and ecological balance. However, under natural conditions, the “colour mixing mechanism” of locusts and the small scale of locusts in high-resolution images make it difficult to detect locusts. In this study, we propose a multi-scale prediction network SSK-Yolo based on YoloV5 to effectively solve the above two problems. Firstly, in the data preprocessing stage, in order to better adapt to the relatively small-scale targets, we use the k-means algorithm to cluster the a priori frames to obtain anchor frames with appropriate scale sizes. Secondly, in the backbone, we still use the traditional convolution to extract the shallow graphical features, and we use swin-transformer to extract the deep semantic features, so as to improve the accuracy of feature extraction and fusion for small targets in high-resolution images. In addition, in the data post-processing stage, we replace the NMS algorithm with the soft-nms algorithm by setting a Gaussian function for the neighbouring detection frames based on the overlapping part instead of suppressing all of them. A series of experimental results on the publicly available East Asian locust dataset demonstrate that SSK-Yolo outperforms YoloV5 with a 5% improvement in precision, 1.64% in recall, 12% in mAP, and 2.66% in F1-score. SSK-Yolo provides an efficient and viable solution for locust detection in the field of pest and disease control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad Loti, N.N., Mohd Noor, M.R., Chang, S.W.: Integrated analysis of machine learning and deep learning in chili pest and disease identification. J. Sci. Food Agric. 101(9), 3582–3594 (2021)

    Article  Google Scholar 

  2. Al Bashish, D., Braik, M., Bani-Ahmad, S.: A framework for detection and classification of plant leaf and stem diseases. In: 2010 International Conference on Signal and Image Processing, pp. 113–118. IEEE (2010)

    Google Scholar 

  3. Aurangzeb, K., Akmal, F., Attique Khan, M., Sharif, M., Javed, M.Y.: Advanced machine learning algorithm based system for crops leaf diseases recognition. In: 2020 6th Conference on Data Science and Machine Learning Applications (CDMA), pp. 146–151 (2020). https://doi.org/10.1109/CDMA47397.2020.00031

  4. Chen, C., Liang, Y., Zhou, L., Tang, X., Dai, M.: An automatic inspection system for pest detection in granaries using yolov4. Comput. Electron. Agric. 201, 107302 (2022)

    Article  Google Scholar 

  5. Chudzik, P., Mitchell, A., Alkaseem, M., Wu, Y., Fang, S., Hudaib, T., Pearson, S., Al-Diri, B.: Mobile real-time grasshopper detection and data aggregation framework. Sci. Rep. 10(1), 1150 (2020)

    Article  Google Scholar 

  6. Dong, S., et al.: Automatic crop pest detection oriented multiscale feature fusion approach. Insects 13(6), 554 (2022)

    Article  Google Scholar 

  7. Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.: ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. arXiv preprint arXiv:1811.12231 (2018)

  8. Gong, H., et al.: Based on FCN and DenseNet framework for the research of rice pest identification methods. Agronomy 13(2), 410 (2023)

    Article  Google Scholar 

  9. Islam, M.A., Islam, M.S., Hossen, M.S., Emon, M.U., Keya, M.S., Habib, A.: Machine learning based image classification of papaya disease recognition. In: 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA), pp. 1353–1360 (2020). https://doi.org/10.1109/ICECA49313.2020.9297570

  10. Jocher, G., et al.: ultralytics/yolov5: v6. 0-YOLOv5n ‘nano’ models, roboflow integration, tensorflow export, OpenCV DNN support. Zenodo (2021)

    Google Scholar 

  11. Karar, M.E., Alsunaydi, F., Albusaymi, S., Alotaibi, S.: A new mobile application of agricultural pests recognition using deep learning in cloud computing system. Alex. Eng. J. 60(5), 4423–4432 (2021)

    Article  Google Scholar 

  12. Khalifa, N.E.M., Loey, M., Taha, M.H.N.: Insect pests recognition based on deep transfer learning models. J. Theor. Appl. Inf. Technol. 98(1), 60–68 (2020)

    Google Scholar 

  13. Li, W., Zhu, T., Li, X., Dong, J., Liu, J.: Recommending advanced deep learning models for efficient insect pest detection. Agriculture 12(7), 1065 (2022)

    Article  Google Scholar 

  14. Liu, J., Wang, X.: Tomato diseases and pests detection based on improved yolo V3 convolutional neural network. Front. Plant Sci. 11, 898 (2020)

    Article  Google Scholar 

  15. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision - ECCV 2016, pp. 21–37. Springer International Publishing, Cham (2016)

    Chapter  Google Scholar 

  16. Liu, W., Wu, G., Ren, F., Kang, X.: DFF-ResNet: an insect pest recognition model based on residual networks. Big Data Min. Analytics 3(4), 300–310 (2020)

    Article  Google Scholar 

  17. Liu, Y., et al.: Forest pest identification based on a new dataset and convolutional neural network model with enhancement strategy. Comput. Electron. Agric. 192, 106625 (2022)

    Article  Google Scholar 

  18. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  19. Madhavan, M.V., Thanh, D.N.H., Khamparia, A., Pande, S., Malik, R., Gupta, D.: Recognition and classification of pomegranate leaves diseases by image processing and machine learning techniques. Comput. Mater. Continua 66(3), 2939–2955 (2021)

    Article  Google Scholar 

  20. Radosavovic, I., Kosaraju, R.P., Girshick, R., He, K., Dollar, P.: Designing network design spaces. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  21. Ramesh, S., et al.: Plant disease detection using machine learning. In: 2018 International Conference on Design Innovations for 3Cs Compute Communicate Control (ICDI3C), pp. 41–45 (2018). https://doi.org/10.1109/ICDI3C.2018.00017

  22. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  23. Rothe, P., Kshirsagar, R.: Automated extraction of digital images features of three kinds of cotton leaf diseases. In: 2014 International Conference on Electronics, Communication and Computational Engineering (ICECCE), pp. 67–71 (2014)

    Google Scholar 

  24. Shuhan, L., Ye, S.J.: Using an image segmentation and support vector machine method for identifying two locust species and instars. J. Integr. Agric. 19(5), 1301–1313 (2020)

    Article  Google Scholar 

  25. Sinha, D., El-Sharkawy, M.: Thin MobileNet: an enhanced mobilenet architecture. In: 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), pp. 0280–0285 (2019). https://doi.org/10.1109/UEMCON47517.2019.8993089

  26. Tan, M., Le, Q.: EfficientNet: Rethinking model scaling for convolutional neural networks. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 97, pp. 6105–6114. PMLR (2019). https://proceedings.mlr.press/v97/tan19a.html

  27. Wang, R., Jiao, L., Xie, C., Chen, P., Du, J., Li, R.: S-RPN: sampling-balanced region proposal network for small crop pest detection. Comput. Electron. Agric. 187, 106290 (2021)

    Article  Google Scholar 

  28. Xiao, Z., Yin, K., Geng, L., Wu, J., Zhang, F., Liu, Y.: Pest identification via hyperspectral image and deep learning. SIViP 16(4), 873–880 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bei Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, B., Zhang, J., Yuan, T., Huang, P., Feng, C., Li, M. (2024). SSK-Yolo: Global Feature-Driven Small Object Detection Network for Images. In: Rudinac, S., et al. MultiMedia Modeling. MMM 2024. Lecture Notes in Computer Science, vol 14554. Springer, Cham. https://doi.org/10.1007/978-3-031-53305-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53305-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53304-4

  • Online ISBN: 978-3-031-53305-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics