Skip to main content

Quality Scalable Video Coding Based on Neural Representation

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14554))

Included in the following conference series:

  • 431 Accesses

Abstract

Neural Representation for Videos (NeRV) encodes each video into a network, providing a promising solution to video compression. However, existing NeRV methods are limited to representing single-quality videos with fixed-size models. To accommodate varying quality requirements, NeRV methods need multiple separate networks with different sizes, resulting in additional training and storage costs. To address this, we propose a Quality Scalable Video Coding method based on Neural Representation, in which a hierarchical network consisting of a base layer (BL) and several enhancement layers (ELs) represents the same video with coarse-to-fine qualities. As the smallest subnetwork, the BL represents basic content. The larger subnetworks can be formed by gradually adding the ELs which capture residuals between the lower-quality reconstructed frames and original ones. Since the larger subnetworks share the parameters of the smaller ones, our method saves 40% of storage space. In addition, our structural design and training strategy enable each subnetwork to outperform the baseline on average +0.29 PSNR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A.: Overview of the h. 264/avc video coding standard. IEEE Trans. Circuits Syst. Video Technol. 13(7), 560–576 (2003)

    Google Scholar 

  2. Sullivan, G.J., Ohm, J.R., Han, W.J., Wiegand, T.: Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1649–1668 (2012)

    Article  Google Scholar 

  3. Lu, G., Ouyang, W., Xu, D., Zhang, X., Cai, C., Gao, Z.: DVC: an end-to-end deep video compression framework. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11006–11015 (2019)

    Google Scholar 

  4. Li, J., Li, B., Lu, Y.: Deep contextual video compression. Adv. Neural. Inf. Process. Syst. 34, 18114–18125 (2021)

    Google Scholar 

  5. Dupont, E., Goliński, A., Alizadeh, M., Teh, Y.W., Doucet, A.: COIN: compression with implicit neural representations. arXiv preprint arXiv:2103.03123 (2021)

  6. Dupont, E., Loya, H., Alizadeh, M., Goliński, A., Teh, Y.W., Doucet, A.: COIN++: neural compression across modalities. arXiv preprint arXiv:2201.12904 (2022)

  7. Strümpler, Y., Postels, J., Yang, R., Gool, L.V., Tombari, F.: Implicit neural representations for image compression. In: European Conference on Computer Vision, pp. 74–91. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19809-0_5

  8. Zhang, Y., van Rozendaal, T., Brehmer, J., Nagel, M., Cohen, T.: Implicit neural video compression. arXiv preprint arXiv:2112.11312 (2021)

  9. Rho, D., Cho, J., Ko, J.H., Park, E.: Neural residual flow fields for efficient video representations. In: Proceedings of the Asian Conference on Computer Vision, pp. 3447–3463 (2022)

    Google Scholar 

  10. Chen, H., He, B., Wang, H., Ren, Y., Lim, S.N., Shrivastava, A.: NeRV: neural representations for videos. Adv. Neural. Inf. Process. Syst. 34, 21557–21568 (2021)

    Google Scholar 

  11. Li, Z., Wang, M., Pi, H., Xu, K., Mei, J., Liu, Y.: E-NeRV: expedite neural video representation with disentangled spatial-temporal context. In: European Conference on Computer Vision, pp. 267–284. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19833-5_16

  12. Kim, S., Yu, S., Lee, J., Shin, J.: Scalable neural video representations with learnable positional features. Adv. Neural. Inf. Process. Syst. 35, 12718–12731 (2022)

    Google Scholar 

  13. He, B., et al.: Towards scalable neural representation for diverse videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6132–6142 (2023)

    Google Scholar 

  14. Chen, H., Gwilliam, M., He, B., Lim, S.N., Shrivastava, A.: CNeRV: content-adaptive neural representation for visual data. arXiv preprint arXiv:2211.10421 (2022)

  15. Chen, H., Gwilliam, M., Lim, S.N., Shrivastava, A.: HNeRV: a hybrid neural representation for videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10270–10279 (2023)

    Google Scholar 

  16. Zhao, Q., Asif, M.S., Ma, Z.: DNeRV: modeling inherent dynamics via difference neural representation for videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2031–2040 (2023)

    Google Scholar 

  17. Schwarz, H., Marpe, D., Wiegand, T.: Overview of the scalable video coding extension of the h. 264/avc standard. IEEE Trans. Circuits Syst. Video Technol. 17(9), 1103–1120 (2007)

    Google Scholar 

  18. Boyce, J.M., Ye, Y., Chen, J., Ramasubramonian, A.K.: Overview of SHVC: scalable extensions of the high efficiency video coding standard. IEEE Trans. Circuits Syst. Video Technol. 26(1), 20–34 (2015)

    Article  Google Scholar 

  19. Big buck bunny. http://bbb3d.renderfarming.net/download.html

  20. Mercat, A., Viitanen, M., Vanne, J.: UVG dataset: 50/120fps 4k sequences for video codec analysis and development. In: Proceedings of the 11th ACM Multimedia Systems Conference, pp. 297–302 (2020)

    Google Scholar 

  21. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)

    Article  Google Scholar 

  22. Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit neural representations with periodic activation functions. Adv. Neural. Inf. Process. Syst. 33, 7462–7473 (2020)

    Google Scholar 

  23. Chen, Y., Liu, S., Wang, X.: Learning continuous image representation with local implicit image function. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8628–8638 (2021)

    Google Scholar 

  24. Cho, J., Nam, S., Rho, D., Ko, J.H., Park, E.: Streamable neural fields. In: European Conference on Computer Vision, pp. 595–612. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20044-1_34

  25. Landgraf, Z., Hornung, A.S., Cabral, R.S.: PINs: progressive implicit networks for multi-scale neural representations. arXiv preprint arXiv:2202.04713 (2022)

  26. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the 2020s. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11976–11986 (2022)

    Google Scholar 

  27. Rusu, A.A., et al.: Progressive neural networks. arXiv preprint arXiv:1606.04671 (2016)

  28. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongdong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, Q., Zhang, D., Sun, C. (2024). Quality Scalable Video Coding Based on Neural Representation. In: Rudinac, S., et al. MultiMedia Modeling. MMM 2024. Lecture Notes in Computer Science, vol 14554. Springer, Cham. https://doi.org/10.1007/978-3-031-53305-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53305-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53304-4

  • Online ISBN: 978-3-031-53305-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics