Skip to main content

A Detail-Guided Multi-source Fusion Network for Remote Sensing Object Detection

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14554))

Included in the following conference series:

  • 385 Accesses

Abstract

Optical and synthetic aperture radar (SAR) remote sensing have established themselves as valuable tools for object detection. Optical images exhibit weather-dependence but offer intricate information, whereas SAR images are weather-independent but may exhibit speckle noise and weaker edge details. Combining them can significantly enhance object detection precision. Nonetheless, existing fusion techniques frequently introduce noise of SAR images into fused features, consequently impinging on the efficacy of object detection. In this study, we present an innovative object detection architecture. It extracts detailed richness maps from optical images, subsequently employing these maps to recalibrate the spatial attention weights assigned to optical and SAR features. This strategic adjustment mitigates the impact of SAR noise on fused features within regions abundant in optical intricacies. Moreover, prevailing public optical-SAR fusion datasets need more meticulous instance-level object annotations, rendering them unsuitable for fulfilling object detection. Thus, we introduce two distinct datasets: OPTSAR, characterized by high registration accuracy, and QXS-PART, offering a counterpart with lower registration accuracy to validate the efficiency and generalization of our method. Both datasets encompass instance-level labels for diverse entities such as ships, aircraft, and storage tanks. Empirical assessments conducted on the OPTSAR and QXS-PART datasets underscore the prowess of our method. It substantiates a marked enhancement in object detection precision across well-aligned and poorly aligned optical-SAR fusion scenarios. Our method notably surpasses the efficacy of single-source object detection methodologies and established fusion approaches in terms of accuracy.

Supported by Natural Science Foundation of Anhui Province (Grant No. 2208085MF157).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheng, Y., Cai, R., Li, Z., Zhao, X., Huang, K.: Locality-sensitive deconvolution networks with gated fusion for RGB-D indoor semantic segmentation. In: IEEE Conference on Computer Vision & Pattern Recognition (2017)

    Google Scholar 

  2. Chu, S.Y., Lee, M.S.: MT-DETR: robust end-to-end multimodal detection with confidence fusion. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 5252–5261 (2023)

    Google Scholar 

  3. Chudasama, V., Kar, P., Gudmalwar, A., Shah, N., Wasnik, P., Onoe, N.: M2FNet: multi-modal fusion network for emotion recognition in conversation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4652–4661 (2022)

    Google Scholar 

  4. Frigo, O., Martin-Gaffe, L., Wacongne, C.: DooDLeNet: Double deepLab enhanced feature fusion for thermal-color semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3021–3029 (2022)

    Google Scholar 

  5. Fu, S., Xu, F., Jin, Y.Q.: Reciprocal translation between SAR and optical remote sensing images with cascaded-residual adversarial networks. Sci. China Inf. Sci. 64, 1–15 (2021)

    Article  Google Scholar 

  6. Huang, M., et al.: The QXS-SAROPT dataset for deep learning in SAR-optical data fusion (2021)

    Google Scholar 

  7. Li, H., Wu, X.J.: DenseFuse: a fusion approach to infrared and visible images. IEEE Trans. Image Process. 28, 2614–2623 (2018)

    Article  MathSciNet  Google Scholar 

  8. Jung, H., Kim, Y., Jang, H., Ha, N., Sohn, K.: Unsupervised deep image fusion with structure tensor representations. IEEE Trans. Image Process. 29(99), 3845–3858 (2020)

    Article  Google Scholar 

  9. Kulkarni, S.C., Rege, P.P.: Pixel level fusion techniques for SAR and optical images: a review. Inf. Fusion 59, 13–29 (2020)

    Article  Google Scholar 

  10. Li, C., et al.: Yolov6 v3. 0: A full-scale reloading. arXiv preprint arXiv:2301.05586 (2023)

  11. Li, X., et al.: Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection. In: Advances in Neural Information Processing Systems vol. 33, pp. 21002–21012 (2020)

    Google Scholar 

  12. Li, Y., et al.: DeepFusion: lidar-camera deep fusion for multi-modal 3D object detection (2022)

    Google Scholar 

  13. Liu, J., et al.: Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5802–5811 (2022)

    Google Scholar 

  14. Ma, J., Tang, L., Fan, F., Huang, J., Mei, X., Ma, Y.: SwinFusion: cross-domain long-range learning for general image fusion via Swin transformer. IEEE/CAA J. Automatica Sinica 9(7), 1200–1217 (2022)

    Article  Google Scholar 

  15. Schmitt, M., Hughes, L.H., Qiu, C., Zhu, X.X.: SEN12MS - a curated dataset of georeferenced multi-spectral sentinel-1/2 imagery for deep learning and data fusion (2019)

    Google Scholar 

  16. Schmitt, M., Hughes, L.H., Zhu, X.X.: The sen1-2 dataset for deep learning in SAR-optical data fusion (2018)

    Google Scholar 

  17. Sun, Y., Cao, B., Zhu, P., Hu, Q.: DetFusion: a detection-driven infrared and visible image fusion network. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 4003–4011 (2022)

    Google Scholar 

  18. Vaswani, A., et al.: Attention is all you need. arXiv (2017)

    Google Scholar 

  19. Wang, Y., Chen, X., Cao, L., Huang, W., Sun, F., Wang, Y.: Multimodal token fusion for vision transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12186–12195 (2022)

    Google Scholar 

  20. Wang, Y., Zhu, X.X., Zeisl, B., Pollefeys, M.: Fusing meter-resolution 4-D InSAR point clouds and optical images for semantic urban infrastructure monitoring. IEEE Trans. Geosci. Remote Sens. 1–13 (2017)

    Google Scholar 

  21. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)

    Google Scholar 

  22. Wu, J., Shen, T., Wang, Q., Tao, Z., Zeng, K., Song, J.: Local adaptive illumination-driven input-level fusion for infrared and visible object detection. Remote Sens. 15(3), 660 (2023)

    Article  Google Scholar 

  23. Wu, W., Guo, S., Shao, Z., Li, D.: CroFuseNet: a semantic segmentation network for urban impervious surface extraction based on cross fusion of optical and SAR images. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 16, 2573–2588 (2023)

    Article  Google Scholar 

  24. Xia, Y., Zhang, H., Zhang, L., Fan, Z.: Cloud removal of optical remote sensing imagery with multitemporal SAR-optical data using X-Mtgan. In: IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, pp. 3396–3399. IEEE (2019)

    Google Scholar 

  25. Xiao, Y., Yang, M., Li, C., Liu, L., Tang, J.: Attribute-based progressive fusion network for RGBT tracking. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 2831–2838 (2022)

    Google Scholar 

  26. Xu, H., Wang, X., Ma, J.: DRF: disentangled representation for visible and infrared image fusion. IEEE Trans. Instrum. Meas. 70, 1–13 (2021)

    Google Scholar 

  27. Yao, Y., Mihalcea, R.: Modality-specific learning rates for effective multimodal additive late-fusion. In: Findings of the Association for Computational Linguistics: ACL 2022, pp. 1824–1834 (2022)

    Google Scholar 

  28. Zhang, H., Ma, J.: SDNet: a versatile squeeze-and-decomposition network for real-time image fusion. Int. J. Comput. Vis. 129, 2761–2785 (2021)

    Google Scholar 

  29. Zhao, X., Zhang, L., Pang, Y., Lu, H., Zhang, L.: A single stream network for robust and real-time RGB-D salient object detection (2020)

    Google Scholar 

  30. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouhong Wan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, X., Wan, S., Zhang, H., Jin, P. (2024). A Detail-Guided Multi-source Fusion Network for Remote Sensing Object Detection. In: Rudinac, S., et al. MultiMedia Modeling. MMM 2024. Lecture Notes in Computer Science, vol 14554. Springer, Cham. https://doi.org/10.1007/978-3-031-53305-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53305-1_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53304-4

  • Online ISBN: 978-3-031-53305-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics