Abstract
Super resolution (SR) and fast magnetic resonance (MR) imaging play a paramount role in medical diagnosis community. Though significant progress has been achieved, existing methods are mostly trapped at the local feature dependencies. Transformer holds the potential to tackle this issue, yet it is notoriously known with heavy computational burden. As a remedy, we propose a Fourier Transformer Network (FTN), which leverages 2D Fast Fourier Transform (FFT) to harvest the global relationships. Specifically, multiple Fourier Transformer Blocks (FTBs) are stacked as the backbone, comprehensively extracting the sematic representations. Due to the appealing efficiency of FFT, the overall model complexity is linear to tokens, as opposed to the quadratic complexity of previous transformer-based models. Besides, an edge-enhancement branch is incorporated into FTB in a flexible manner, which further sharpens the contour information of the organs and tissues. Extensive experiments on IXI dataset validate the superiority of FTN over most state-of-the-art methods.
Supported by organization x.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)
Carmi, E., Liu, S., Alon, N., Fiat, A., Fiat, D.: Resolution enhancement in MRI. Magn. Reson. Imag. 24(2), 133–154 (2006)
Chen, Y., et al.: Drop an octave: Reducing spatial redundancy in convolutional neural networks with octave convolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3435–3444 (2019)
Feng, C.-M., Fu, H., Yuan, S., Xu, Y.: Multi-contrast MRI super-resolution via a multi-stage integration network. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 140–149. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_14
Feng, C.M., Yan, Y., Chen, G., Xu, Y., Hu, Y., Shao, L., Fu, H.: Multi-modal transformer for accelerated mr imaging. IEEE Transactions on Medical Imaging (2022)
Feng, C.-M., Yan, Y., Fu, H., Chen, L., Xu, Y.: Task transformer network for joint MRI reconstruction and super-resolution. In: Bruijne de, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 307–317. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_30
Feng, C.M., Yan, Y., Yu, K., Xu, Y., Shao, L., Fu, H.: Exploring separable attention for multi-contrast mr image super-resolution. arXiv preprint arXiv:2109.01664 (2021)
Feng, C.M., Yang, Z., Fu, H., Xu, Y., Yang, J., Shao, L.: Donet: dual-octave network for fast MR image reconstruction. IEEE Transactions on Neural Networks and Learning Systems (2021)
Hammernik, K., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79(6), 3055–3071 (2018)
Hu, X., Wang, H., Cai, Y., Zhao, X., Zhang, Y.: Pyramid orthogonal attention network based on dual self-similarity for accurate mr image super-resolution. In: 2021 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2021)
Huang, Q., Yang, D., Wu, P., Qu, H., Yi, J., Metaxas, D.: MRI reconstruction via cascaded channel-wise attention network. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1622–1626. IEEE (2019)
Jiang, M., Zhai, F., Kong, J.: A novel deep learning model ddu-net using edge features to enhance brain tumor segmentation on MR images. Artif. Intell. Med. 121, 102180 (2021)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Li, G., et al.: Transformer-empowered multi-scale contextual matching and aggregation for multi-contrast mri super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20636–20645 (2022)
Li, G., Lyu, J., Wang, C., Dou, Q., Qin, J.: Wavtrans: synergizing wavelet and cross-attention transformer for multi-contrast mri super-resolution. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 463–473. Springer (2022). https://doi.org/10.1007/978-3-031-16446-0_44
Liu, Q., Yang, Q., Cheng, H., Wang, S., Zhang, M., Liang, D.: Highly undersampled magnetic resonance imaging reconstruction using autoencoding priors. Magn. Reson. Med. 83(1), 322–336 (2020)
Lyu, Q., et al.: Multi-contrast super-resolution MRI through a progressive network. IEEE Trans. Med. Imaging 39(9), 2738–2749 (2020)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Schlemper, J., Caballero, J., Hajnal, J.V., Price, A.N., Rueckert, D.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 37(2), 491–503 (2017)
Sun, J., Li, H., Xu, Z., et al.: Deep admm-net for compressive sensing MRI. In: Advances in Neural Information Processing Systems 29 (2016)
Wang, H., Hu, X., Zhao, X., Zhang, Y.: Wide weighted attention multi-scale network for accurate MR image super-resolution. IEEE Trans. Circuits Syst. Video Technol. 32(3), 962–975 (2021)
Wang, S., et al.: Deepcomplexmri: exploiting deep residual network for fast parallel MR imaging with complex convolution. Magn. Reson. Imaging 68, 136–147 (2020)
Wang, W., Shen, H., Chen, J., Xing, F.: Mhan: multi-stage hybrid attention network for MRI reconstruction and super-resolution. Computers in Biology and Medicine, p. 107181 (2023)
Zhang, M., Zhang, M., Zhang, F., Chaddad, A., Evans, A.: Robust brain MR image compressive sensing via re-weighted total variation and sparse regression. Magn. Reson. Imag. 85, 271–286 (2022)
Zhao, C., et al.: A deep learning based anti-aliasing self super-resolution algorithm for MRI. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 100–108. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_12
Zhao, X., Zhang, Y., Zhang, T., Zou, X.: Channel splitting network for single MR image super-resolution. IEEE Trans. Image Process. 28(11), 5649–5662 (2019)
Zhou, B., Zhou, S.K.: Dudornet: learning a dual-domain recurrent network for fast mri reconstruction with deep t1 prior. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4273–4282 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chen, J., Wu, F., Wang, W., Sheng, H. (2024). Fourier Transformer for Joint Super-Resolution and Reconstruction of MR Image. In: Rudinac, S., et al. MultiMedia Modeling. MMM 2024. Lecture Notes in Computer Science, vol 14555. Springer, Cham. https://doi.org/10.1007/978-3-031-53308-2_26
Download citation
DOI: https://doi.org/10.1007/978-3-031-53308-2_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-53307-5
Online ISBN: 978-3-031-53308-2
eBook Packages: Computer ScienceComputer Science (R0)