Skip to main content

HPattack: An Effective Adversarial Attack for Human Parsing

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2024)

Abstract

Adversarial attacks on human parsing models aim to mislead deep neural networks by injecting imperceptible perturbations to input images. In general, different human parts are connected in a closed region. The attacks do not work well if we directly transfer current adversarial attacks on standard semantic segmentation models to human parsers. In this paper, we propose an effective adversarial attack method called HPattack, for human parsing from two perspectives, i.e., sensitive pixel mining and prediction fooling. By analyzing the characteristics of human parsing tasks, we propose exploiting the human region and contour clues to improve the attack capability. To further fool the human parsers, we introduce a novel background target attack mechanism by leading the predictions away from the correct label to obtain high-quality adversarial examples. Comparative experiments on the human parsing benchmark dataset have shown that HPattack can produce more effective adversarial examples than other methods at the same number of iterations. Furthermore, HPattack also successfully attacks the Segment Anything Model (SAM) model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akhtar, N., Mian, A., Kardan, N., Shah, M.: Advances in adversarial attacks and defenses in computer vision: a survey. IEEE Access 9, 155161–155196 (2021)

    Article  Google Scholar 

  2. Arnab, A., Miksik, O., Torr, P.H.: On the robustness of semantic segmentation models to adversarial attacks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 888–897 (2018)

    Google Scholar 

  3. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs (2014). arXiv preprint arXiv:1412.7062

  4. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  5. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation (2017). arXiv preprint arXiv:1706.05587

  6. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018)

    Google Scholar 

  7. Dong, Y., et al.: Efficient decision-based black-box adversarial attacks on face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7714–7722 (2019)

    Google Scholar 

  8. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples (2014). arXiv preprint arXiv:1412.6572

  9. Gu, J., Zhao, H., Tresp, V., Torr, P.: Adversarial examples on segmentation models can be easy to transfer (2021). arXiv preprint arXiv:2111.11368

  10. Gu, J., Zhao, H., Tresp, V., Torr, P.H.S.: SegPGD: an effective and efficient adversarial attack for evaluating and boosting segmentation robustness. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. ECCV 2022. LNCS, vol. 13689. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19818-2_18

  11. Gupta, P., Rahtu, E.: MLAttack: fooling semantic segmentation networks by multi-layer attacks. In: Fink, G.A., Frintrop, S., Jiang, X. (eds.) DAGM GCPR 2019. LNCS, vol. 11824, pp. 401–413. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33676-9_28

    Chapter  Google Scholar 

  12. Hendrik Metzen, J., Chaithanya Kumar, M., Brox, T., Fischer, V.: Universal adversarial perturbations against semantic image segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2755–2764 (2017)

    Google Scholar 

  13. Kang, X., Song, B., Du, X., Guizani, M.: Adversarial attacks for image segmentation on multiple lightweight models. IEEE Access 8, 31359–31370 (2020)

    Article  Google Scholar 

  14. Kirillov, A., et al.: Segment anything (2023). arXiv preprint arXiv:2304.02643

  15. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world. arXiv e-prints pp. arXiv-1607 (2016)

    Google Scholar 

  16. Li, L., Zhou, T., Wang, W., Li, J., Yang, Y.: Deep hierarchical semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1246–1257 (2022)

    Google Scholar 

  17. Li, P., Xu, Y., Wei, Y., Yang, Y.: Self-correction for human parsing. IEEE Trans. Pattern Anal. Mach. Intell. 44(6), 3260–3271 (2022)

    Article  Google Scholar 

  18. Liang, X., Gong, K., Shen, X., Lin, L.: Look into person: Joint body parsing & pose estimation network and a new benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 41(4), 871–885 (2018)

    Article  Google Scholar 

  19. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks (2017). arXiv preprint arXiv:1706.06083

  20. Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: DeepFool: a simple and accurate method to fool deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2574–2582 (2016)

    Google Scholar 

  21. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limitations of deep learning in adversarial settings. In: 2016 IEEE European Symposium on Security and Privacy (EuroS &P), pp. 372–387. IEEE (2016)

    Google Scholar 

  22. Ruan, T., Liu, T., Huang, Z., Wei, Y., Wei, S., Zhao, Y.: Devil in the details: towards accurate single and multiple human parsing. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 33, pp. 4814–4821 (2019)

    Google Scholar 

  23. Sharif, M., Bhagavatula, S., Bauer, L., Reiter, M.K.: A general framework for adversarial examples with objectives. ACM Trans. Priv. Secur. (TOPS) 22(3), 1–30 (2019)

    Article  Google Scholar 

  24. Sun, L., Tan, M., Zhou, Z.: A survey of practical adversarial example attacks. Cybersecurity 1, 1–9 (2018)

    Article  Google Scholar 

  25. Wang, W., Zhou, T., Qi, S., Shen, J., Zhu, S.C.: Hierarchical human semantic parsing with comprehensive part-relation modeling. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3508–3522 (2021)

    Google Scholar 

  26. Xiao, C., Deng, R., Li, B., Yu, F., Liu, M., Song, D.: Characterizing adversarial examples based on spatial consistency information for semantic segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 217–234 (2018)

    Google Scholar 

  27. Xie, C., Wang, J., Zhang, Z., Zhou, Y., Xie, L., Yuille, A.: Adversarial examples for semantic segmentation and object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1369–1378 (2017)

    Google Scholar 

  28. Zhang, S., Qi, G.J., Cao, X., Song, Z., Zhou, J.: Human parsing with pyramidical gather-excite context. IEEE Trans. Circuits Syst. Video Technol. 31(3), 1016–1030 (2020)

    Article  Google Scholar 

  29. Zhang, Z., Su, C., Zheng, L., Xie, X.: Correlating edge, pose with parsing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8900–8909 (2020)

    Google Scholar 

  30. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China Under Grants No.62176253, No.62202461 and China Postdoctoral Science Foundation No.2022M723364.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dong, X., Wang, R., Zhang, S., Jing, L. (2024). HPattack: An Effective Adversarial Attack for Human Parsing. In: Rudinac, S., et al. MultiMedia Modeling. MMM 2024. Lecture Notes in Computer Science, vol 14555. Springer, Cham. https://doi.org/10.1007/978-3-031-53308-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53308-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53307-5

  • Online ISBN: 978-3-031-53308-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics