Abstract
Adversarial attacks on human parsing models aim to mislead deep neural networks by injecting imperceptible perturbations to input images. In general, different human parts are connected in a closed region. The attacks do not work well if we directly transfer current adversarial attacks on standard semantic segmentation models to human parsers. In this paper, we propose an effective adversarial attack method called HPattack, for human parsing from two perspectives, i.e., sensitive pixel mining and prediction fooling. By analyzing the characteristics of human parsing tasks, we propose exploiting the human region and contour clues to improve the attack capability. To further fool the human parsers, we introduce a novel background target attack mechanism by leading the predictions away from the correct label to obtain high-quality adversarial examples. Comparative experiments on the human parsing benchmark dataset have shown that HPattack can produce more effective adversarial examples than other methods at the same number of iterations. Furthermore, HPattack also successfully attacks the Segment Anything Model (SAM) model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akhtar, N., Mian, A., Kardan, N., Shah, M.: Advances in adversarial attacks and defenses in computer vision: a survey. IEEE Access 9, 155161–155196 (2021)
Arnab, A., Miksik, O., Torr, P.H.: On the robustness of semantic segmentation models to adversarial attacks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 888–897 (2018)
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs (2014). arXiv preprint arXiv:1412.7062
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)
Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation (2017). arXiv preprint arXiv:1706.05587
Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018)
Dong, Y., et al.: Efficient decision-based black-box adversarial attacks on face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7714–7722 (2019)
Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples (2014). arXiv preprint arXiv:1412.6572
Gu, J., Zhao, H., Tresp, V., Torr, P.: Adversarial examples on segmentation models can be easy to transfer (2021). arXiv preprint arXiv:2111.11368
Gu, J., Zhao, H., Tresp, V., Torr, P.H.S.: SegPGD: an effective and efficient adversarial attack for evaluating and boosting segmentation robustness. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. ECCV 2022. LNCS, vol. 13689. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19818-2_18
Gupta, P., Rahtu, E.: MLAttack: fooling semantic segmentation networks by multi-layer attacks. In: Fink, G.A., Frintrop, S., Jiang, X. (eds.) DAGM GCPR 2019. LNCS, vol. 11824, pp. 401–413. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33676-9_28
Hendrik Metzen, J., Chaithanya Kumar, M., Brox, T., Fischer, V.: Universal adversarial perturbations against semantic image segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2755–2764 (2017)
Kang, X., Song, B., Du, X., Guizani, M.: Adversarial attacks for image segmentation on multiple lightweight models. IEEE Access 8, 31359–31370 (2020)
Kirillov, A., et al.: Segment anything (2023). arXiv preprint arXiv:2304.02643
Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world. arXiv e-prints pp. arXiv-1607 (2016)
Li, L., Zhou, T., Wang, W., Li, J., Yang, Y.: Deep hierarchical semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1246–1257 (2022)
Li, P., Xu, Y., Wei, Y., Yang, Y.: Self-correction for human parsing. IEEE Trans. Pattern Anal. Mach. Intell. 44(6), 3260–3271 (2022)
Liang, X., Gong, K., Shen, X., Lin, L.: Look into person: Joint body parsing & pose estimation network and a new benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 41(4), 871–885 (2018)
Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks (2017). arXiv preprint arXiv:1706.06083
Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: DeepFool: a simple and accurate method to fool deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2574–2582 (2016)
Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limitations of deep learning in adversarial settings. In: 2016 IEEE European Symposium on Security and Privacy (EuroS &P), pp. 372–387. IEEE (2016)
Ruan, T., Liu, T., Huang, Z., Wei, Y., Wei, S., Zhao, Y.: Devil in the details: towards accurate single and multiple human parsing. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 33, pp. 4814–4821 (2019)
Sharif, M., Bhagavatula, S., Bauer, L., Reiter, M.K.: A general framework for adversarial examples with objectives. ACM Trans. Priv. Secur. (TOPS) 22(3), 1–30 (2019)
Sun, L., Tan, M., Zhou, Z.: A survey of practical adversarial example attacks. Cybersecurity 1, 1–9 (2018)
Wang, W., Zhou, T., Qi, S., Shen, J., Zhu, S.C.: Hierarchical human semantic parsing with comprehensive part-relation modeling. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3508–3522 (2021)
Xiao, C., Deng, R., Li, B., Yu, F., Liu, M., Song, D.: Characterizing adversarial examples based on spatial consistency information for semantic segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 217–234 (2018)
Xie, C., Wang, J., Zhang, Z., Zhou, Y., Xie, L., Yuille, A.: Adversarial examples for semantic segmentation and object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1369–1378 (2017)
Zhang, S., Qi, G.J., Cao, X., Song, Z., Zhou, J.: Human parsing with pyramidical gather-excite context. IEEE Trans. Circuits Syst. Video Technol. 31(3), 1016–1030 (2020)
Zhang, Z., Su, C., Zheng, L., Xie, X.: Correlating edge, pose with parsing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8900–8909 (2020)
Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)
Acknowledgements
This work is supported in part by the National Natural Science Foundation of China Under Grants No.62176253, No.62202461 and China Postdoctoral Science Foundation No.2022M723364.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Dong, X., Wang, R., Zhang, S., Jing, L. (2024). HPattack: An Effective Adversarial Attack for Human Parsing. In: Rudinac, S., et al. MultiMedia Modeling. MMM 2024. Lecture Notes in Computer Science, vol 14555. Springer, Cham. https://doi.org/10.1007/978-3-031-53308-2_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-53308-2_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-53307-5
Online ISBN: 978-3-031-53308-2
eBook Packages: Computer ScienceComputer Science (R0)