Skip to main content

Semantic Importance-Based Deep Image Compression Using a Generative Approach

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14555))

Included in the following conference series:

  • 958 Accesses

Abstract

Semantic image compression can greatly reduce the amount of transmitted data by representing and reconstructing images using semantic information. Considering the fact that objects in an image are not equally important at the semantic level, we propose a semantic importance-based deep image compression scheme, where a generative approach is used to produce a visually pleasing image from segmentation information. A base-layer image can be reconstructed using a conditional generative adversarial network (GAN) considering the importance of objects. To ensure that objects with the same semantic importance have similar perceptual fidelity, a generative compensation module has been designed, considering the varying generative capability of GAN. The base-layer image can be further refined using residuals, prioritizing regions with high semantic importance. Experimental results show that the reconstructed images of the proposed scheme are more visually pleasing compared with relevant schemes, and objects with a high semantic importance achieve both good pixel and semantic-perceptual fidelity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agustsson, E., Tschannen, M., Mentzer, F., Timofte, R., Gool, L.V.: Generative adversarial networks for extreme learned image compression, pp. 221–231 (2019)

    Google Scholar 

  2. Akbari, M., Liang, J., Han, J.: DSSLIC: deep semantic segmentation-based layered image compression. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2042–2046 (2019)

    Google Scholar 

  3. Balle, J., Laparra, V., Simoncelli, E.P.: End-to-end optimization of nonlinear transform codes for perceptual quality. In: Picture Coding Symposium (PCS), pp. 1–5. IEEE, Nuremberg, Germany (2016). https://doi.org/10.1109/PCS.2016.7906310

  4. Bellard., F.: BPG Image format

    Google Scholar 

  5. Binkowski, M., Sutherland, D.J., Arbel, M., Gretton, A.: Demystifying MMD GANs. ArXiv:1801.01401 (2018)

  6. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. IEEE (2016)

    Google Scholar 

  7. Goodfellow, I., et al.: Generative adversarial nets. In: Neural Information Processing Systems (2014)

    Google Scholar 

  8. Google: WebP Image format (2010). https://developers.google.com/speed/webp/

  9. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  10. Hoang, T.M., Zhou, J., Fan, Y.: Image compression with encoder-decoder matched semantic segmentation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 160–161 (2020)

    Google Scholar 

  11. Huang, D., Gao, F., Tao, X., Du, Q., Lu, J.: Towards semantic communications: deep learning-based image semantic coding. IEEE J. Selected Areas Commun. 41(1), 55–71 (2022)

    Google Scholar 

  12. Huang, D., Tao, X., Gao, F., Lu, J.: Deep learning-based image semantic coding for semantic communications. In: IEEE Global Communications Conference (GLOBECOM), pp. 1–6 (2021)

    Google Scholar 

  13. Liu, M., Zhu, C., Wu, X.: Index assignment design for three-description lattice vector quantization. In: 2006 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 4-pp. IEEE (2006)

    Google Scholar 

  14. Liu, Y.Y., Zhu, C., Mao, M.: Light field image compression based on quality aware pseudo-temporal sequence. Electron. Lett. 54(8), 500–501 (2018)

    Article  Google Scholar 

  15. Liu, Z., Meng, L., Tan, Y., Zhang, J., Zhang, H.: Image compression based on octave convolution and semantic segmentation. Knowl.-Based Syst. 228, 107254 (2021)

    Article  Google Scholar 

  16. Meng, L., Li, H., Zhang, J., Tan, Y., Ren, Y., Zhang, H.: Convolutional auto-encoder based multiple description coding network. KSII Trans. Internet and Inform. Syst. (TIIS) 14(4), 1689–1703 (2020)

    Google Scholar 

  17. Mentzer, F., Toderici, G.D., Tschannen, M., Agustsson, E.: High-fidelity generative image compression. Adv. Neural. Inf. Process. Syst. 33, 11913–11924 (2020)

    Google Scholar 

  18. Padilla, R., Netto, S.L., Silva, E.: A survey on performance metrics for object-detection algorithms. In: International Conference on Systems, Signals and Image Processing (IWSSIP) (2020)

    Google Scholar 

  19. Paszke, A., et al.: Automatic differentiation in pytorch (2017)

    Google Scholar 

  20. Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. arXiv e-prints (2018)

    Google Scholar 

  21. Shi, J., Chen, Z.: Reinforced bit allocation under task-driven semantic distortion metrics. In: IEEE International Symposium on Circuits And Systems (ISCAS), pp. 1–5 (2020)

    Google Scholar 

  22. Skodras, A., Christopoulos, C., Ebrahimi, T.: The JPEG 2000 still image compression standard. IEEE Signal Process. Mag. 18(5), 36–58 (2001)

    Article  Google Scholar 

  23. Wallace, Gregory, K.: The JPEG still picture compression standard. Communications ACM 34(4), 30–44 (1991)

    Google Scholar 

  24. Zhang, D., et al.: Exploring resolution fields for scalable image compression with uncertainty guidance. IEEE Trans. Circ. Syst. Video Technolpp. (2023). https://doi.org/10.1109/TCSVT.2023.3307438

  25. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

  26. Zhao, L., Bai, H., Wang, A., Zhao, Y.: Multiple description convolutional neural networks for image compression. IEEE Trans. Circuits Syst. Video Technol. 29(8), 2494–2508 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanyuan Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gu, X., Xu, Y., Zhu, K. (2024). Semantic Importance-Based Deep Image Compression Using a Generative Approach. In: Rudinac, S., et al. MultiMedia Modeling. MMM 2024. Lecture Notes in Computer Science, vol 14555. Springer, Cham. https://doi.org/10.1007/978-3-031-53308-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53308-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53307-5

  • Online ISBN: 978-3-031-53308-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics